
Discussions on the next generation OS

OS Design for the Future
of a Connected World

Xiao-Feng Li
xiaofeng.li@gmail.com
January 2020

Agenda
❖ OS from individual to group

❖ OS from application to service

❖ OS from I/O to sensing

❖ Survey of the industry

OS design is evolving

❖ Trend: from hardware enabling towards user services.

3

BIOS BIOS

DOS

BIOS

DOS

Linux

BIOS

DOS

Linux

Android

BIOS

DOS

Linux

Android

Super app

?

❖ A consumer OS is comprised of three components

❖ Resource management (for vendors)

❖ APIs (for app developers)

❖ Interfaces (for users)

❖ Trend: most innovations in recent years are in app
development. Methodology of hardware enabling and
user interactions changes slowly.

APIs

OS components in the highest level

4

Resource

applications

interface

What decides a consumer OS?
❖ Why we call it Android

❖ Not u-boot, little kernel, Linux, super
app, although all the rest are OSes too

❖ Because the primary APIs are
provided by Android

❖ Most apps rely on the services
provided by Android framework

❖ OS is decided by the primary APIs

5

u-boot

Little Kernel

Linux

Android

Android stack

Android

Linux

ChromeOS FirefoxOS

LinuxLinux

Super app

OS service is changing

❖ Trend: from resource management towards daily
assistant

6

BIOS BIOS

DOS

BIOS

DOS

Linux

BIOS

DOS

Linux

Android

BIOS

DOS

Linux

Android

Board

I/O

GUI

Internet

Cloud ?

?

Super app

Levels of service APIs

❖ Diff services use diff protocols at diff levels, because
of the design legacy from ground up accumulatively

7

Data source Functionalities Protocol

Process File system Hardware
abstraction System call

Inter-process Data server App features IPC

Local Device P2P/AV/Sensor WiFi/BT/NFC

Remote Internet Cloud services HTTP

*Only examples, not a full list.

One protocol for all services

❖ Android is evolving close to a consistent protocol
through Binder, except for local services

8

Data source Functionalities Protocol

Process File system Hardware
abstraction HIDL

Inter-process Data server App features AIDL

Local Device P2P/AV/Sensor ?

Remote Internet Cloud services Google APIs

*Android status as an example.

Local area protocols
❖ Google has Nearby/Wear/Auto/Cast protocols,

specifically for different devices

❖ They are not general enough to various devices. A unified
solution is,

❖ Extend Binder to cross-devices services

❖ With multi-channel Audio/Video streaming

❖ With Nearby for discovery and connection

❖ With multi-display for other scenarios

9

Apps

Another view of OS architecture

10

Resource management

Kernel

Libraries/Runtimes

IPC

Kotlin
App

Java
App

HTML5
App

Flutter
AppGoogle

Mobile
Services

Package
Manager
 Service

Activity
Manager
 Services

Sensor
Manager
 Service

Android’s “microkernel” design

Agenda
❖ OS from individual to group

❖ OS from application to service

❖ OS from I/O to sensing

❖ Survey of the industry

Service-oriented OS
❖ Modern OS is around services, instead of hardware

❖ Service protocol: binder IPC

❖ Registration/discovery: package manager

❖ Lifetime/session: activity manager

❖ User interface: GUI+touch

❖ External events: notification manager

❖ Data service: content provider

12

OS: From individual to group

❖ Mostly other devices act as accessories to phone. Very
little about p2p services or group services.

13

OS Individual Group

Service protocol IPC Wear/Cast/Auto/…

Service discovery package manager Nearby/WiFi

Service session activity manager ? (device-specific)

Service data content provider ? (device-specific)

External events notification manager ? (device-specific)

Service interface GUI/touch ? (device-specific)

*Android status as an example.

Build a group OS

❖ Android can be extended for a group OS

14

OS Individual Group

Service protocol IPC RPC

Service discovery package manager Nearby manager

Service session activity manager session manager

Service data content provider distributed data

External events notification manager distributed events

Service interface GUI/touch voice/gesture

Meta API Tasker/Shortcuts DSL

Data are services too
❖ Services today only provide end-to-end integrated data

❖ Users should regain the control of their own data

15

Data source Examples Exposed as services

External service apps, movies, books DRM/blockchain

Self produced photos, credit cards,
passwords, app state

Distributed data

Runtime data video stream, sensor
data

Exposed with APIs

Services: from local to external

❖ Information mainly comes from service provider and
social network

16

Cloud

push
/pull

E.g., n
ew

s/
sea

rch

push/pull

E.g., message/follow

Group OS

External service entry points
❖ Three main entry points

❖ Pull: Search (Google, Baidu, …)

❖ Push: News (Yahoo, Toutiao, …)

❖ Bidirectional: Social (Facebook, Wechat, …)
❖ (Notes: Once dominating one entry, anxious to dominate others.

Other services, e.g., maps, etc. are natural extensions.)

❖ OS for next generation should support the models natively

17

Apps readiness to external services
❖ Android app is barely external service ready.

❖ H5 Applet: app ≈ doc ≈ info ≈ social ≉ cloud

18

PWA H5 Applet Android

Page searchable Internet In super app Slice in phone
App in store

State recoverable Partially Partially Yes

Optional install Yes Yes Instant app

Cross-platform Yes Yes Partially

Native access Partially Partially Yes

Composable No No Bundle/Binder

Distributable Yes Yes Partially

Agenda
❖ OS from individual to group

❖ OS from application to service

❖ OS from I/O to sensing

❖ Survey of the industry

HCI is from I/O to sensing

❖ User interface becomes more and more natural

20

keyboard

monitor

punched tape keyboard

monitor

mouse

GUI

keyboard

monitor

mouse

GUI

touch

sensor

keyboard

monitor

mouse

GUI

sensor

touch

mouse

GUI

touch

sensor

voice

camera

?

❖ OS has to receive inputs
from devices around it,
and present outputs to
suitable devices

❖ Inputs are not necessarily
immediate info, can be
long term profile

Context-aware OS

21

phone

mic/camera
IMU/location

camera
beacon

wearable

miniwave

TV

PC

treadmill

hobby

shopping

friends

family

jobs

travel

diet

Inputs/outputs are services
❖ Input - computing - output should be decoupled and

distributed

❖ Application development still follows MVC-class
models, and here V is essentially based on I/O services

❖ OS APIs provide seamlessly access to the decoupled
M-V-C service providers

22

Kotlin
App

Java
App

HTML5
App

Flutter
App Google

Mobile
Services

Package
Manager
 Service

Activity
Manager
 Services

Sensor
Manager
 Service

Output
Manager
 Service

Input
Manager
 Service

External services

Remote View
❖ Each has their respective use cases:

❖ (Virtual) display mirror

❖ Remote frame-buffer/desktop

❖ Remote rendering

❖ UI client distribution

❖ Align the inputs, synchronize the outputs

❖ Critical for AV experiences

23

Service semantics
❖ Services are mostly binary interfaces

❖ Not human readable

❖ Not web searchable

❖ Not directly map to human activities

❖ Services should be defined with semantics

❖ Describe services with human readable tokens

❖ Services can be connected according to the tokens

24

DSL as high level APIs
❖ DSL program can be developed or generated

❖ Programmable like IFTTT

❖ Generated from human multi-modal instructions

❖ Human instructions ➡ Sequence of semantic tokens ➡
DSL program ➡ OS service operations

❖ AI engine is mandatory

❖ DSL program can be converted to common app

❖ Managed by app store and is distributable

25

Abstraction and modularity
❖ Context-aware OS involves lots of dynamic resources and

states

❖ Device loads components according to context

❖ Different devices loads different components

❖ Devices can use different OSes but agree on protocols

❖ Considerations

❖ System update, app migration, API stability, real time,
account, security, etc.

26

Agenda
❖ OS from individual to group

❖ OS from application to service

❖ OS from I/O to sensing

❖ Survey of the industry

Summary
❖ Design the next generation OS based on existing one,

by enhancing the capabilities of,

❖ Distributed and connected

❖ Service-oriented APIs

❖ Natural interactions

32

APIs

Resource

applications

interface

Services APIs

Distributed
resource

applications

natural
interactions

Current OS Next-gen OS

