
Xiao-Feng Li 

xiaofeng.li@gmail.com 

Oct, 2011 

UXtune – a toolkit to accelerate Android user 
interaction optimizations 

Thanks to Ke Chen and Greg Zhu 



2 

Summary 

• UXtune is an engineering toolkit for Android 
user interaction analysis and optimization 

• Tuning user interaction requires to understand 
the state transitions. We need, 

– Repeatable inputs to operate the device 

– Correlation of events between the analyzed entities 

– Metrics outputs to characterize the state transition 

2011/11/23 



3 

Agenda 

• Optimization methodology and toolkit 

• The inputs: Input-Gestures 

• The process analysis: UXtune 

• The outputs: meter-FPS, app-launch, touch-
pressure 

• Case Studies with UXtune toolkit 

• Summary 

2011/11/23 



4 

User Interactions with Client Device 

• A sequence of interactions 

Human 
Input 

Target 
Response 

Screen 
transition 

Object 
movement 

• Does the input 
trigger the target 
correctly? 

• Does the system act 
responsively? 

• Does the graphics 
transition smoothly? 

• Does the object 
move coherently?  

Device User 

interaction 

2011/11/23 



5 

Optimize User Interaction Systematically 

• What we need: 

– A well-established methodology 

– An engineering workload suite 

– An analysis/tuning toolkit 

– Sightings/requests/feedbacks from the users, etc. 

 

 

• (The methodology details are in another deck) 

• (The workload suite details are in another deck) 

 

2011/11/23 



6 

Relation Between Workloads and Toolkit (1) 

• Workloads are to characterize the 
representative usage models of the system 

– One workload can execute part of the system 

– A comprehensive suite can cover most of the system 

• Tools are to analyze the system 

– A tool itself does not represent a use case 

– A tool can be used to analyze a usage model 

– The common part of multiple usage models can be 
abstracted into a tool 

 

2011/11/23 



7 

Relation Between Workloads and Toolkit (2) 

 

 

 

 

 

A B C D 

A M N D 

Use case A 

Use case B 

Use case A 

Use case B 

tool X  

B C 

M N 

tool X  Tool Y  Tool Z  

2011/11/23 



8 

Relation Between Workloads and Toolkit (3) 

Activity 1 Activity 2 

Service 1 Service 2 

Input output 

Activity 
1 

Activity 
2 

Service 
1 

Service 
2 

Inp
ut 

out
put 

1. Standalone workload 

Activity 
1 

Activity 
2 

Service 
1 

Service 
2 

Inp
ut 

out
put 

2. Micro workload 

Activity 
1 

Activity 
2 

Service 
1 

Service 
2 

Inp
ut 

out
put 

3. Measurement tool 

Activity 
1 

Activity 
2 

Service 
1 

Service 
2 

Inp
ut 

out
put 

4. Scenario driver 

2011/11/23 



9 

UXtune Toolkit 

• To analyze and optimize Android, we need 

– Repeatable inputs operating the device 

• Android input-Gestures 

– Sequence of interaction events between the system 
components, such as event, frame, thread, etc.   

• Android UXtune 

– Metrics outputs characterizing the behavior 

• Android meter-FPS 

• Android app-launch 

• Android touch-pressure 

2011/11/23 



10 

Agenda 

• Optimization methodology and toolkit 

• The inputs: Input-Gestures 

• The process analysis: UXtune 

• The outputs: meter-FPS, app-launch, touch-
pressure 

• Case Studies with UXtune toolkit 

• Summary 

 

2011/11/23 



11 

Android Tool for Inputs: Input-Gestures 

• A tool to generate standard touch gestures 

– So that people have same and repeatable inputs 

• Supported gestures 

– Scroll: up/down/left/right from specified start 
position to specified end position in specified time 

– Fling: up/down/left/right at specified position 

– Zoom: in/out at specified position with specified 
span 

– Tap (double taps): at specified position    

– Long press: at specified position for specified 
duration 

2011/11/23 



12 

From Events to Gestures 

• All gestures can be generated by Input-
Gestures by emitting raw touch events 

Raw touch events 

Motion events: Down/Up/Move/… 

Touch gestures: Scroll/Fling/… 

Input-Gestures Application 

Services 

Event 
driver 

2011/11/23 



13 

Input-Gestures vs. Manual Touch 

• Software latency is our optimization focus  

– Software latency is around x100ms 

– Touch sampling rate is typically 200HZ (5ms interval) 

Typically 200Hz 
sampling rate 

Input-Gestures 
Manual  
touch 

Touch 
sensor 

Event 
hub 

Input 
dispatcher 

app 
Input 
driver 

Event 
dev file 

Software latency Physical latency 

2011/11/23 



14 

Example: Scroll Gesture Generation (1) 

• A common recorded raw event sequence of a scroll 

 

 

 

 

 

 

• The leading events stay at same position  

– In this example, the duration is 50ms   

– Should be removed for scroll response time measurement 

Coordinate value 

X values 

Y values 

Event time 

50ms 

2011/11/23 



15 

• A simply generated raw event sequence of a scroll 

 

 

 

 

 

 

• The leading events move faster than real sequence 

– Gesture detection identifies the “scroll” earlier than real 

– In this example, it shortens the response time by 10ms  

Example: Scroll Gesture Generation (2) 

Coordinate value 

X values 

Y values 

Event time 

2011/11/23 



16 

Example: Scroll Gesture Generation (3) 

• Ensure the generated gestures are comparable 
across different platforms  

– Across different resolutions, screen size 

– With different event format 

 

1000000000 3 48 1 
1000000010 3 53 3284 
1000000020 3 54 2747 
1000000030 0 2 0 
1000000040 0 0 0 
1000005000 3 48 1 
1000005010 3 53 3284 
1000005020 3 54 2735 

1000000000 3 48 1 
1000000010 3 53 1810 
1000000020 3 54 1515 
1000000030 0 2 0 
1000000040 0 0 0 
1000005000 3 48 1 
1000005010 3 53 1810 
1000005020 3 54 1508 

Events of same gesture on 
Device X 

Events of same gesture on 
Device Y 

2011/11/23 



17 

Agenda 

• Optimization methodology and toolkit 

• The inputs: Input-Gestures 

• The process analysis: UXtune 

• The outputs: meter-FPS, app-launch, touch-
pressure 

• Case Studies with UXtune toolkit 

• Summary 

 

2011/11/23 



18 

Android Tool for Analysis: UXtune  

• A tool to assist the analysis of user interactions 

– The key is to characterize the state transitions 

• UXtune design idea 

– Vertical correlation: Map system events across layers 
to user-level activities 

• E.g., Events, gestures, frames 

– Horizontal correlation: Correlate runtime activities 
between different system entities 

• E.g., a thread triggers a garbage collection 

– Visualization based on pyTimeChart 

2011/11/23 



19 

BKM in User Interaction Tuning 

Traditional tuning BKM 

Inputs: 
• System 
• Workload 
• Tool 

Outputs summary: 
• #Events happened 
• #Events sampled 
• Map to app code 

Inputs: 
• System 
• Workload 
• Tool 

Outputs sequence: 
• Events at T : XY 
• Map to system entities 
• Map to app actions 

User Interaction tuning BKM 

eventA eventB eventA eventA eventS 

. . . 

eventA 
timeT1 
A  B 

. . . 

evntB 
timeT2 
B  A 

eventA 
timeT3 
A  C 

eventA 
timeT4 
A  B 

eventS 
timeTn 
X  B 

2011/11/23 



20 

Visualize Vertical/Horizontal Correlations  

CPU states 

Android 
threads 

OS 
threads 

User level 
activities 
(events, frames) 

2011/11/23 



21 

• A problematic period in CaffeinMark execution 

• The problematic period occupies about 20% in total 
execution time 

• The idle spots (CPU idle time) together take about 
20% of the problematic period 

• Performance impact: 20% * 20% = 4% 

• Not mention the incurred CPU frequency adjustment 

 

Example: UXtune Analyzes CaffeinMark 

Grey spots mean CPU idle 

2011/11/23 



22 

Android Concurrent GC Design 

• GC design led to CPU idle because no active 
threads run 

– GC needs to pause app threads for root enumeration 

1. GC thread sets a flag asking app thread(s) to suspend for 
GC root set enumeration 

2. GC thread checks if app is suspended. If not yet, GC thread 
yields to let app run to suspend 

3. GC thread comes back to check again. If not, GC thread 
sleeps for 10ms 

4. App is suspended at some time point (possible CPU idle) 

5. GC thread wakes up, finishes root enumeration, and lets 
app resume 

 

2011/11/23 



23 

Interactions Between GC thread and App 

Good  
scenario 

Bad  
scenario 

Mutator 

Collector 

Suspend 
yourself 

Mutator  
suspended 

Collector checkspoint. 
- Is suspended?  
- Yes, let’s go 

Mutator 

Collector 

Suspend 
yourself 

Mutator  
suspended 

Collector checkspoint. 
- Is suspended?  
- NO. let’s prepare and sleep 

Collector sleeps 10 ms 

App idle 

GC active 

App idle 

GC sleep 

In the bad scenario   
• No active thread for a moment 

2011/11/23 



24 

More UXtune Analysis with CaffeinMark 

• The execution mainly involves two threads 

– CaffeinMark app thread (com.android.cm3) 

– GC thread  

• Both are idle for a moment 

– Bad GC scenario happens in CaffeinMark 

 

2011/11/23 

CPU idle period 



25 

Optimizing Android Concurrent GC 

• In the GC bad scenario, replace the 10ms 
sleeping with a CPU-yielding action 

– GC thread gives up the core instead of sleeping 

1. GC thread notifies the app thread(s) to suspend 

2. GC thread checks if app is suspended. If not yet, goto Step 
3. If yes, goto Step 4 

3. GC thread yields to let app run to suspend. When GC 
thread comes back, goto Step 2 

4. App is suspended at some time point. If no other thread, 
the GC thread should be scheduled to run 

5. GC thread finishes root enumeration, then lets app 
resume. GC thread continues collection concurrently 

2011/11/23 



26 

GC Scenarios with Improvement 

Good  
scenario 
Unchanged 

Bad  
scenario 
Improved 

Mutator 

Collector 

Suspend 
yourself 

Mutator  
suspended 

Collector checkspoint. 
- Is suspended?  
- Yes, let’s go 

Mutator 

Collector 

Suspend 
yourself 

Mutator  
suspended 

Collector checkspoint. 
- Is suspended?  
- NO. let’s give up the core 

App active 

GC active 

App idle 

GC active 

In the bad scenario   
• Active thread always existing  

2011/11/23 



27 

Agenda 

• Optimization methodology and toolkit  

• The inputs: Input-Gestures 

• The process analysis: UXtune 

• The outputs: meter-FPS, app-launch, touch-
pressure 

• Case Studies with UXtune toolkit 

• Summary 

 

2011/11/23 



28 

Android Tool for Metrics: Meter-FPS 

• A tool to measure the FPS value of the system 

– Include other metrics like maximal frame time, frame 
time variance, #long-time-frames, frame drop rate 

• Design idea 

– Intercept the graphics processing paths to get the 
logs of the every frame 

App A 
Surface Buffer 0 

Surface Buffer 1 

App B 
Surface Buffer 0 

Surface Buffer 1 

Frame Buffer 0 

Frame Buffer 1 

Display 
Device 

SurfaceFlinger 

2 
3 1 

2011/11/23 



29 

Android-FPS Implementations 

• Real-time FPS 

– Show FPS on screen and update in configured 
frequency 

• Post-processing FPS 

– Output metrics of whole term of running into file 

• Application FPS 

– Specially designed applications to get app-specific 
FPS metrics 

2011/11/23 



30 

Meter-FPS Example (1): Camera Application 

• Different areas may have different FPS values 

– One FPS value is not enough to reflect the 
application behavior 

 

 

 

                                                                   panel 

Status Bar 

Preview window 
SurfaceFlinger 

2011/11/23 



31 

Meter-FPS Example (2): Apps Switching 

• The compositing window manager generates 
the app-switch animation 

– Applications do not draw during apps switching 

Window Manager 

App A 
Surface Buffer 0 

Surface Buffer 1 

App B 
Surface Buffer 0 

Surface Buffer 1 

Frame Buffer 0 

Frame Buffer 1 

Display 
Device 

SurfaceFlinger 

Window 
Manager 

2011/11/23 



32 

Meter-FPS Example (3): Real-time FPS 

Runtime version  
On Device S 

A NDK  version 
On Device S 

Runtime  version 
On Device T 

Fruit FPS = 39 
systemUI FPS = 1 

FPS = 59 
systemUI FPS = 1 

Fruite FPS = 40 

2011/11/23 



33 

Android Tool for Metrics: App-Launch 

• A tool to characterize application’s launch time  

3
3 

Launch Time Android reported Time 

Launcher 
Process 

Systemserver 
Process 

LaunchedApp 
Process 

End point of 
startActivityAndWait() 

1.PausePreApp 

2.AttachProcess 

3.LaunchActivity 

4.PerformLayout 

2011/11/23 



34 

Android App-Launch Usage 

• AppLaunchWorkload.apk  

– Install->Configure ->Start 

 

Selected 
applications 

Configure: select or 
deselect applications 

Outputs: result 
status and data 

Fresh or warm 
launch 

1 

2 3 

2011/11/23 



35 

Android Tool for Metrics: Touch-Pressure 

• A tool to get the touch pressure value 

– Pressure is used extensively as natural control 

• Drawing, playing music instruments, gaming, etc. 

• A Press in a real device 

 

2011/11/23 



36 

Touch Pressure Resolution Measurement  

• Touch Pressure Resolution 

– # different pressure values supported by the system 

– Higher resolution means finer pressure control 

• The tool is designed 
as a game 

• Press the screen to fill 
in the segments 

• Reflect the real control 
precision 

2011/11/23 



37 

Agenda 

• Optimization methodology and toolkit 

• The inputs: Input-Gestures 

• The process analysis: UXtune 

• The outputs: meter-FPS, app-launch, touch-
pressure 

• Case Studies with UXtune toolkit 

• Summary 

 

2011/11/23 



38 

Case Studies with UXtune Toolkit 

• Analysis of browser scroll lag distance 

• Analysis of FPS bottleneck in MOTO racing game 

2011/11/23 



39 

Browser Scroll Lag Distance 

Time T0 

Time T2 

Position P0 

Time T1 

P1 

P2 

P1 

2011/11/23 



40 

UXtune Analysis of Lag Distance  

• Poor drawing performance causes long lag 

• UI thread wastes time on outdated events 

Compositing start Compositing end 
Compositing start 

for M-1 

Send event M: 
851.9/458.3 

Handle event M-1 : 
850/542.8 

Send event M+1: 
852/404.6 

Handle event M : 
851.9/458.3 

Compositing end 

   
57ms 

   

16ms 

Lag distance in vertical = 542.8 – 404.6 pixels 

Browser thread 

2011/11/23 



41 

Case Studies with UXtune Toolkit 

• Analysis of browser scroll lag distance 

• Analysis of FPS bottleneck in MOTO racing game 

 

 

2011/11/23 



42 

Racing Game Introduction 

• MOTO racing game is popular in Android market 

2011/11/23 



43 

UXtune Analysis of MOTO Racing 
Compositing start Compositing end 

Moto racing 
thread 

App drawing 
start 

App drawing 
end 

App drawing 
start 

30ms 

24ms 

Idle 10ms 

• Idle time in both app and drawing threads 

• The root cause has been identified 

2011/11/23 



44 

Agenda 

• Optimization methodology and toolkit 

• The inputs: Input-Gestures 

• The process analysis: UXtune 

• The outputs: meter-FPS, app-launch, touch-
pressure 

• Case Studies with UXtune toolkit 

• Summary 

2011/11/23 



45 

Summary 

• UXtune is an engineering toolkit for Android 
user interaction analysis and optimization 

• Tuning user interaction requires to understand 
the state transitions upon user inputs. We 
need, 

– Repeatable inputs to operate the device 

– Correlation of events between the analyzed entities 

– Metrics outputs to characterize the state transitions 

2011/11/23 


