

Shangri-La: Achieving High Performance from Compiled
Network Applications while Enabling Ease of Programming

Michael K. Chen1, Xiao Feng Li2, Ruiqi Lian3, Jason H. Lin2, Lixia Liu2, Tao Liu3, Roy Ju1

1. Microprocessor Technology Labs
Intel Corporation
Santa Clara, CA, USA
{michael.k.chen, roy.ju}@intel.com

2. Intel China Research Center Ltd.
Beijing, China
{xiao.feng.li, jason.h.lin,
lixia.liu}@intel.com

3. Institute of Computing Technology
China Academy of Sciences
Beijing, China
{lrq, liutao}@ict.ac.cn

Abstract

Programming network processors is challenging. To sustain
high line rates, network processors have extremely tight memory
access and instruction budgets. Achieving desired performance has
traditionally required hand-coded assembly. Researchers have
recently proposed high-level programming languages for packet
processing, but the challenges of compiling these languages into
code that is competitive with hand-tuned assembly remain
unanswered.

This paper describes the Shangri-La compiler, which accepts a
packet program written in a C-like high-level language and applies
scalar and specialized optimizations to generate a highly optimized
binary. Hot code paths identified by profiling are mapped across
processing elements to maximize processor utilization. Since our
compilation target has no hardware caches, software-controlled
caches are generated for frequently accessed application data
structures. Packet handling optimizations significantly reduce per-
packet memory access and instruction counts. Finally, a custom
stack model maps stack frames to the fastest levels of the target
processor’s heterogeneous memory hierarchy.

Binaries generated by the compiler were evaluated on the Intel
IXP2400 network processor with eight packet processing cores and
eight threads per core. Our results show the importance of both
traditional and specialized optimization techniques for achieving the
maximum forwarding rates on three network applications, L3-
Switch, MPLS and Firewall.

Categories and Subject Descriptors: D.3.2 [Programming
Languages]: Language Classifications – data-flow languages,
specialized application languages; D.3.4 [Programming
Languages]: Processors – code generation, compilers,
optimization.

General Terms Algorithms, Performance, Design, Languages.

Keywords Packet processing, network processors, chip
multiprocessors, throughput-oriented computing, program
partitioning, dataflow programming.

1. Introduction
In spite of the time and effort required, network processors like

the Intel IXP [16], IBM PowerNP [15], Broadcom BCM1250 [4]
and PMC Sierra RM9000 [29] have been mostly programmed using

hand-coded assembly. Networks have mostly relied on the
widespread use of a few core packet programs. To achieve high line
rates, though, a network program usually has very tight memory
access and instruction count budgets. In the past, careful hand-
optimization of assembly code has been the most effective means of
achieving the required performance given the small kernels and
difficult resource constraints.

As networks have evolved, so has the code running them,
becoming larger, more diverse and complex. More and more
network protocols are being developed for specialized applications
(e.g. wireless, VoIP, proxies, network-attached storage).
Enhancements to base protocols have been implemented to satisfy
load balancing, security and reliability requirements. Shipped
network hardware must operate correctly in an increasing number of
different configurations.

Hand-coded assembly has become a hindrance to developing
new network applications and updating existing applications.
Reusing common routines written in assembly in different contexts
is difficult, debugging assembly code is extremely tedious and
maintaining assembly code is a time-consuming effort. Even state-
of-the-art tools that abstract some of the assembly programming
details still expose to programmers the multi-threaded packet
processing cores, heterogeneous memories and custom
communication topologies found on network processors.

Shangri-La, which consists of a programming language, a
compiler and a runtime system, simplifies development and
accelerates performance tuning of network applications. The
Shangri-La compiler accepts a program written in Baker, a high-
level, domain specific language for designing modular network
applications. Aggressive optimizations are applied so that code
written in the high-level language can achieve performance
comparable to hand-tuned assembly code. Although the compiler
currently targets the Intel IXP multi-core network processor, many
of the techniques we describe are generally applicable since they
deal with the difficulties of targeting heterogeneous multiprocessors
and heterogeneous memories, and of optimizing network
application constructs.

The primary contributions of this paper are:
� Demonstrated ability to achieve comparable hand-tuned

performance on highly resource-constrained network
processors from code compiled from a high-level language.

� A complete framework for aggressively compiling network
programs using both traditional and specialized optimizations
techniques. Hot code paths identified from profiling are
mapped across processing elements to maximize packet
forwarding rates. Delayed-update software-controlled caches
are automatically generated for unprotected, error-tolerant
application data structures, useful for network processors that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
PLDI’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-056-6/05/0006…$5.00.

224

have no hardware caches. Packet handling optimizations help
reduce per-packet memory access and instruction counts. A
custom stack model maps program stack frames to the fastest
levels of the target processor’s heterogeneous memory
hierarchy.

� Detailed performance evaluation of compiler generated code
on real IXP hardware of three popular network applications,
L3-Switch, MPLS and Firewall. The results show the
importance of traditional and specialized optimization
techniques in achieving maximal packet forwarding rates.
The remainder of this paper details the major components of

the Shangri-La system and provides results from running our
compiler-generated code on real hardware. Section 2 introduces the
Baker network programming language. Section 3 presents the
architecture and performance characteristics of Shangri-La’s target
hardware, the Intel IXP. Section 4 introduces the Shangri-La
compilation framework and the runtime support components.
Section 5 details important optimization techniques implemented in
the Shangri-La compiler. Section 6 presents the results of running
three compiled network applications on real hardware. Section 7
describes related work in compiling for network processors and
Section 8 summarizes our findings.

2. Baker Programming Language
Currently, most network processors are programmed by hand

using assembly. Assembly programming is undesirable for many
reasons. It is not portable between different ISAs. Debugging and
performance-tuning assembly code is a tedious and time-consuming
effort. Finally, assembly programming requires extremely skilled
programmers, since it exposes all the hardware resources. An IXP
programmer must deal explicitly with heterogeneous memories,
inter-processor communication, multi-processing and multi-
threading in addition to the usual complexities.

Even in state-of-the-art tools that allow network processor
code to be written in a C dialect [17][18], these aspects of the
hardware are configured by the programmer through manual
insertion of directives and keywords. For example, keywords
indicate physical memory levels for referred variables and intrinsics
represent accesses to specialized inter-processor communication
hardware. Likewise, data packing and alignment optimizations are
contingent upon input from the programmer. These language
extensions impose significant responsibilities on the programmer
and limit portability of the written programs.

Baker [13] is a platform-independent language for network
application development. A programmer writes packet-processing
applications to an abstract machine with a single level of memory.
Baker looks like C, but includes constructs to enable development
of large applications from reusable, modular components and to
simplify the expression of network programs. Aside from this basic
model, a programmer must only understand that the generated code
may run on a multi-core processor and must explicitly identify any
critical sections.

2.1 Modular framework
Baker programs are structured as a dataflow of packets from

receiver (Rx) to transmitter (Tx), as shown in Figure 1. A module is
a container for holding related packet processing functions (PPFs),
wirings, support code and shared data. PPFs contain the C-like code
that performs the actual packet processing. PPFs can hold
temporary local state and access global data structures. Packets
enter and exit PPFs through channel endpoints. The input and
output channel endpoints of PPFs wired together form

communication channels (CCs), shown as directed arrows in the
figure. CCs are asynchronous and can be thought of as queues or
FIFOs. Output endpoints are also immediate-release. This means
that when a PPF places data on an output, the data is released onto
the CC and is no longer accessible to the PPF. A piece of sample
Baker code is shown in Figure 2.

bridge.p

lpm_lookup.p

options_processor.p

icmp_processor.p
encap.p

l3
_c

ls
.pl2

_c
ls

.p

Rx
Tx

l2_bridge.m

arp.p
l3_fwdr.m

eth_encap.m

l3_switch.m

Figure 1 – The L3-Swtich Baker program containing Modules
(.m), PPFs (.p) and CCs (directed arrows). L3-Switch bridges

and forwards IP packets.
l3_switch.l2_clsfr.ppf(ether_pkt * ph)
{

int is_arp = (ph->type == ETH_TYPE_ARP);
int forward = (ph->dst ==

mac_addrs[ph->metadata.rx.port]);
if(is_arp){

channel_put(arp_cc, packet_copy(ph));
}
if(forward){

ipv4_pkt iph = packet_decap(ph);
channel_put(l3_forward_cc, iph);

}
else{

channel_put(l2_bridge_cc, ph);
}

}
Figure 2 – l2_clsfr PPF in the l3_switch module

demonstrating packet (ph->protocol_field) and metadata
(ph->metadata.metadata_field) accesses, use of packet

primitives (packet_decap() & packet_copy()) and
placement of packets on CCs (channel_put()).

2.2 Packet support
Designing packet and packet protocol support is especially

tricky. Protocol developers must be able to add new protocol types
easily. There must also be a way to associate state with a packet for
use by the network application that is not stored in the packet.
Component developers must be insulated from lower-layer protocol
encapsulations and packet representations. Finally, manipulations
on packets must be computationally efficient.

A packet’s data can be thought of as a string of bits. How those
bits are interpreted is determined by protocols. A protocol developer
creates new protocols by describing them using Baker’s protocol
construct, illustrated in Figure 3. The demux pseudo field specifies
the protocol’s size in a particular packet.

Packet metadata can be used to store state associated with a
packet, but not contained within a packet. It is particularly useful to
a network programmer for storing state associated with a packet
generated in one PPF and used later by another PPF.

225

ethernet
header

ipv4
header

packet_decap()

head
ptr

user-defined
metadata

packet_handle

tail
ptr

packet_shorten()

packet_extend()

packet_encap()

SRAM
(metadata)

DRAM
(data)

protocol ether {
dst : 48;
src : 48;
type : 16;
demux{ 14 };

};

protocol ipv4 {
ver : 4;
length : 4;
...(fields omitted)
src : 32;
dst : 32;
demux{ length << 2 };

};

Figure 3 – Example protocols and illustrations describing the

effects of packet primitives on a packet_handle.

Baker programs manipulate packets through a

packet_handle. The packet_handle points to packet metadata
in SRAM. The packet metadata holds user-defined metadata and
pointers to the actual packet data in DRAM.

Robust encapsulation primitives make it easy to layer different
packet protocols. packet_decap(), which internally uses the
result of the demux field, is used to access the encapsulated payload.
Equivalently, one can encapsulate one protocol inside another using
packet_encap(). packet_add_tail() and
packet_remove_tail() are primitives used to append data to a
packet. The effects of these primitives on a packet_handle are
shown in Figure 3.

There are other features of Baker used to support various
packet protocols [13] that are beyond the scope of this paper.

2.3 Language restrictions
Baker imposes several language restrictions to reduce analysis

complexity and simplify code generation. Requiring type-alias-free
pointers, which prevent explicit typecasts to change the
interpretation of a given memory location [11], simplifies alias
analysis. Recursion for code within a PPF is not supported for two
reasons: our survey of network applications indicates recursion is
not required; and it would complicate and add overhead to runtime
stacks on processors like the Intel IXP with uncached,
heterogeneous memories.

3. IXP Network Processor
While the optimizations presented in the paper may be

applicable to other network processors, embedded systems or
multiprocessors, the Shangri-La compiler currently targets the Intel
IXP family of network processors [16]. This section highlights the
hardware’s many exposed complexities that make it difficult to
program or target with a high-level compiler.

3.1 Processor cores
Intel IXP processors are specialized chip-multiprocessors, with

one Intel XScale™ core and multiple microengines (MEs) [16]. The
XScale processor is used to process control packets, execute non-
critical application code, and handle initialization and management
of the network processor.

The ME cores are primarily responsible for processing packets.
The IXP2400 used for experiments in the paper, shown in Figure 4,
has eight MEs. Other IXP processors (e.g. IXP1200 or IXP2800)

that have different clock speeds and number of cores can also be
targeted by Shangri-La. MEs are lightweight, multi-threaded,
pipelined processors running a special instruction set designed for
processing packets. Each ME has its own instruction store,
independent of other data memory, that holds all the code for
threads running on that core. This fast, uncached memory can only
hold 4096 40-bit instructions, but it is large enough to hold critical
instruction paths for most network applications.

SRAM

ME 0:1 ME 0:2

ME 0:3 ME 0:4

SRAM Controller 0

SRAM Controller 1

DRAM Controller 0

XScale CoreME 0:1 ME 0:2

ME 0:3 ME 0:4

Network Interface

Hash Unit

SRAM DRAMExternal Media

ISA: ARM V5TE
Speed: 600MHz

ISA: ARM V5TE
Speed: 600MHz

Size: <128MB
Latency: 90cycles

Size: <128MB
Latency: 90cycles

ScratchMemory

Size: <1GB
Latency: 120cycles

Size: <1GB
Latency: 120cycles

Size: <16KB
Latency: 60cycles

Size: <16KB
Latency: 60cycles

ISA: MEv2
Speed: 600MHz
Threads/ME: 8
Local Memory: 2560B

ISA: MEv2
Speed: 600MHz
Threads/ME: 8
Local Memory: 2560B

Figure 4 – Block diagram of the IXP2400 showing

characteristics of the XScale core, MEs and various memories.

One ME has support for four or eight hardware-assisted

threads of execution. Threads on an ME are non-pre-emptive:
executing code must give up control explicitly, on a memory
instruction or a context switch instruction, before another thread can
run. A thread arbiter swaps between ready threads in a round-robin
order. This thread model simplifies synchronization within an ME
and eliminates additional interrupt-handling hardware, but burdens
the programmer with the additional responsibility of handling
context switches.

3.2 Memory architecture
Intel IXPs have heterogeneous and uncached memory

hierarchies. The four separate levels of memory in the IXP are
Local Memory, Scratch Memory, SRAM and DRAM. The sizes
and access latencies of the memories are shown in Figure 4. With
current IXP programming tools, each different level of memory
must be accessed explicitly by the programmer. Memory access
instructions include a ref_cnt parameter that facilitates wide
memory accesses. With the ref_cnt parameter, 4B to 32B of
Scratch Memory or SRAM, and 8B to 64B of DRAM can be
accessed with only one memory instruction. These wide memory
accesses are implemented as reads and writes to a contiguous
sequence of registers.

Local Memory is treated differently from the other levels of
memory. Local Memory is very fast, but is private to a given ME. A
subset of Local Memory can be accessed directly from any
instruction without a load delay using 8- or 16- word offset
addressing. The entire 640 words of Local Memory can be accessed
from any thread in an ME with three cycles of latency.

Notably absent in the IXP are any caches for the MEs. In
general, network processor architects have used die area and power
budgets for multithreading and more processing cores instead of
cache memory. This has been motivated by the observation that
packets have little or no temporal or spatial memory locality.
Additionally, caches are undesirable in embedded systems and in

226

network applications because they introduce non-deterministic
timing effects into a program’s behavior. For example, it is difficult
to guarantee a minimum line rate for a running network application
if it is affected by a cache hit rate.

3.3 Specialized hardware
Although MEs don’t contain traditional caches, they do have

hardware which can be used to implement a software-controlled
cache. Each ME contains a small 16-entry content-addressable
memory (CAM). Each entry of the CAM consists of a 32-bit
address tag and a 4-bit result. A cam_lookup with an address key
will return the matching tag’s entry number and the 4-bit result on a
hit, or the LRU entry number on a miss. An implementation of a
software-controlled cache using the CAM will be described in
Section 5.2.

The IXP network processor includes many other application-
specific features [16] that are beyond the scope of this paper.

4. Shangri-la
Shangri-La is a research project exploring new technologies

for improving network processor performance, programmability
and usability. Shangri-La consists of the Baker programming
language, a compiler, a runtime system and support libraries.
Compiler development has focused on innovating and identifying
effective optimization techniques, while runtime efforts have
explored adaptation techniques to improve performance or reduce
power consumption.

4.1 Compiler
The Shangri-La compiler leverages the large code base of the

ORC [19][1] project. Extensive changes to the base compiler were
made to support the complexities of compiling to the Intel IXP. An
overview of the compiler flow is shown in Figure 5.

Right after the source program is converted into nodes of the
WHIRL intermediate representation (IR), the Function Profiler,
which takes a user-supplied packet trace, simulates the network
application by interpreting the IR nodes. During simulation, the
Functional profiler collects global data structure access frequencies,
CC utilizations and relative PPF execution times.

The Functional profiler is immediately followed by Inter-
procedural analysis (IPA) and global optimizer. IPA is primarily
responsible for forming aggregates, collections of PPFs that are
mapped to one processing element. The partitioning strategy tries to
maximize packet forwarding rates, using Functional profiler
statistics to identify hot CCs to eliminate and frequently executed
PPFs to duplicate. The aggregation methodology will be described
further in Section 5.1. The formed aggregates are then dumped into
separate WHIRL IR files with each file representing one aggregate.

The combined IPA and global optimizer is also responsible for
managing global memory. While most global application data
structures are mapped to SRAM, some data can be placed in Scratch
Memory, though, which has about half the latency of SRAM, but is
significantly smaller. Possible data structures to be placed in Scratch
Memory can be identified with Functional profiler access frequency
statistics.

Aggregate WHIRL
Aggregate WHIRL

ME code
ME code

Stage

Front-end
parser

Operations Output

• Parse Baker WHIRL IR

Functional
profiler

• Simulate application
• Collect execution frequencies

and access frequencies Annotated WHIRL IR

IPA
and
global
optimizer

• Perform inter-procedural
analysis (IPA)

• Estimate code sizes and
execution frequencies

• Map global data to memory
• Choose SW caching candidates
• Analyze packet primitives
• Form aggregates

Aggregate WHIRL

Code
generator

Baker source

• Perform WOPT
• Lower WHIRL to CGIR
• Perform CG optimizations
• Layout program stack

ME code
XScale code

Aggregate WHIRL

Figure 5 – Overview of Shangri-La compilation stages.
Two different paths in the Code Generator target the different

IXP cores. Infrequently executed control, management and
initialization code is mapped to the XScale core. To generate code
for the XScale, the WHIRL nodes are transformed back to C and
then compiled by gcc. We will not discuss this path further since it
is not critical to performance.

Code mapped to the MEs is extensively optimized. First, the
compiler applies SSA-based optimizations like dead code
elimination, copy propagation and redundancy elimination [7].
Afterwards, the WHIRL nodes are lowered into a code generation
intermediate representation (CGIR) adapted for the ME instruction
set in which low-level optimizations like global register allocation
and instruction scheduling are performed.

Significant effort was spent dealing with tricky aspects of the
ME instruction set. For example, the 32 general-purpose registers
available to each ME thread are divided into two banks so that
instructions with two source operands must have each operand
originate from a different register bank. This additional constraint
must be considered during global register allocation. Special
handling was also required to support wide memory accesses. As
mentioned earlier, wide Scratch Memory, SRAM and DRAM reads
and writes access a sequence of adjacent 32-bit registers. To
properly handle the register dependencies for these memory
instructions that read or write multiple registers, the CGIR
implements aggregate pseudo-registers which can associate
dependencies to individual registers or to the entire set of registers.

4.2 Runtime system
Code generated by the Shangri-La compiler is run on the Intel

IXP atop a thin, custom runtime system (RTS). The RTS includes
libraries that abstract commonly found network processor hardware
resources to facilitate runtime reconfiguration of the system. For
example, the RTS can dynamically decide how to map CCs to one
of many possible hardware-specific implementations (e.g. the IXP
has ME next-neighbor registers or Scratch Memory rings for this
purpose). The most promising uses of runtime reconfiguration being
explored include dynamically turning ME cores off to reduce power
consumption when network traffic is low and dynamic code
reconfiguration to adapt to changes in processed packet
characteristics [36]. This part of Shangri-La is under development
and not the focus of this paper.

227

5. Key Optimizations
At high line rates, network processors have extremely tight

instruction and memory access budgets. For OC-48 (2.5Gbps) with
minimum size 64B packets, less than 700 instructions can be
dedicated to processing a given packet on the IXP2400 (which is
designed for the OC-48 configuration) with six MEs (two of the
eight MEs are dedicated to Rx and Tx, respectively).

Available memory bandwidth also is a precious resource on
IXPs. We performed a simple memory access experiment on our
IXP setup to characterize the estimated maximum possible
forwarding rates for different numbers of memory accesses per
packet, as shown in Figure 6. In this experiment, all six
programmable MEs are executing a simple tight loop issuing only
memory accesses. The numbers of memory accesses in the tight
loop are plotted on the x axis and the achieved forwarding rates are
plotted on the y axis. This figure suggests that to achieve 2.5Gbps
for minimum sized packets (64B), there can be no more than two
DRAM accesses, eight SRAM accesses or 64 Scratch memory
accesses for each packet. Also evident in the figure are the
fractionally lower forwarding rates that result from issuing wider
accesses to a given memory level.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16 32 64 128
Memory accesses / 64B packet

Fo
rw

ad
in

g
ra

te
 (G

bp
s)

Scratch (4B) Scratch (32B) SRAM (4B)
SRAM (32B) DRAM (8B) DRAM (64B)

Figure 6 – Illustrates the effects of memory accesses per packet
(1-128), memory level (DRAM, SRAM or Scratch) and memory

access width (8B-64B) on the forwarding rate of a simple
application running on the IXP2400.

While the application of traditional scalar inter-procedural and
intra-procedural optimizations are critical to meeting the tight
instruction and memory budgets, the optimizations highlighted in
this section describe special techniques we applied to meet our
performance goals.

5.1 Aggregation
Aggregation attempts to map the application onto available

processor resources in order to maximize packet forwarding rates.
Aggregation makes use of a throughput model, statistics from the
Functional profiler and an algorithm for creating aggregates from
multiple PPFs.

 k
p
nt ×∝ Equation 1

The throughput relationship shown in Equation 1 describes
packet throughput (t) in terms of the number of MEs (n), the
pipeline stage with the lowest throughput (k) and total number of
pipeline stages (p). For a given IXP processor, n is fixed, leaving p
and k for optimization. k is derived primarily from estimated PPF
execution times and CC overhead statistics collected by the

Functional profiler. The goal of aggregate formation is to
maximize packet forwarding rates.

Compared to traditional multi-processor optimization where
the goal is to minimize total execution time, this relationship: better
reflects how packet pipelines behave; describes the optimization
goal according to how performance is evaluated for packet
processing; and eliminates system latency from the optimization
criteria. The last two points differentiate network applications from
normal program optimization in that latency of a packet through the
system can be tolerated in many cases, but minimum forwarding
rates must be guaranteed.

The throughput-driven cost model can result in significantly
different code from traditional program parallelization that focuses
on latency reduction. When parallelizing a fixed workload, all the
system resources are consumed toward a single goal to minimize
total execution time. In throughput-oriented systems, the available
resources are used to maximize the number of inputs that can be
simultaneously processed. Unlike workload optimization, long
latency communication and memory accesses are tolerable as long
as they can be hidden with work from processing other inputs and
memory bandwidth is not saturated.

This cost model is used to drive aggregate formation, as
shown in Figure 7. To maximize throughput, our compiler can
choose to pipeline or duplicate code across multiple processing
elements. In pipelining, a packet processing task is divided into
aggregate pipe stages (each representing one stage in the pipeline)
that are mapped to different processing elements connected via
CCs. During execution, packets are passed between the aggregate
pipe stages in an assembly-line fashion. Our model correctly
indicates that with n fixed, adding pipe stages (increasing p)
requires a proportional decrease in k to maintain the same
throughput.

done ← false
while ! done do

done ← true
{dom, next_dom} ← FIND_DOMINATING(aggregates)
if EXEC_TIME(dom) >> EXEC_TIME(next_dom) then

if DUPLICATE_IMPROVES_THROUGHPUT(dom, target_throughput)
DUPLICATE(dom)
done ← false
continue

aggregate_pairs ← FORM_PAIRS(aggregates)
SORT_BY_HIGHEST_CHANNEL_COST(aggregate_pairs)
foreach pair in aggregate_pairs do

if MERGE_IMPROVES_THROUGHPUT(pair, target_throughput)
&& MERGE_SATISFIES_CODESIZE_LIMIT(pair) then

MERGE(pair)
done ← false
break

if done && NUM(aggregates) > num_processors then
RELAX_CONSTRAINT(target_throughput)
done ← false

foreach aggr in aggregates do
if(! SATISFIES_CODESIZE_LIMIT(aggr)

| | INFREQUENTLY_EXECUTED(aggr){
MAP_TO_XSCALE(aggr)
remove aggr from aggregates

}
duplication_factor ← num_MEs / NUM(aggregates)
MAP_TO_MES(aggregates, duplication_factor)

Figure 7 – Pseudo-code for forming aggregates.
An individual aggregate pipe stages or the entire pipeline can

also be duplicated to run on multiple processors. Duplicating an
aggregate pipe stage effectively doubles its throughput. The

228

duplicated pipe stage can now handle twice as many packets in
steady-state flow, even though the latency through it remains
unchanged. If the entire packet pipeline is duplicated instead,
floor(n / p) is the pipeline replication factor.

On real network programs and IXP hardware, the throughput
model biases against pipelining and favors duplication for two
reasons. Firstly, to maximize throughput of the slowest pipe
aggregate, work must be evenly partitioned across all pipeline
aggregates, a challenging task in practice. Secondly, pipelining
naturally adds overhead for communicating data over CCs between
each pipe aggregate compared to an equivalent aggregation without
pipelining.

Supporting pipelining, though, is necessary for several reasons.
MEs have very limited code store. If a network application’s critical
path cannot fit into the code store of a single ME, there is no choice
but to utilize pipeline stages. Pipelining may also have beneficial
secondary efforts. Pipelining access to multiple locks might result in
less contention than duplicating one aggregate with multiple locks.
It might also reduce capacity misses for software-controlled caching
(Section 5.2).

Aggregates are formed heuristically by merging or duplicating
PPFs to maximize system throughput. When merging, the goal is to
improve throughput by reducing communication costs. Here, pairs
of PPFs with the highest communication costs are placed on the
same aggregate. Pipeline aggregate duplication is used to improve
the throughput of the slowest pipe aggregate if its throughput is
much less than the other pipeline aggregates. After the aggregates
have been formed, frequently executed aggregates representing the
core packet processing functions are mapped to the MEs while
infrequently executed aggregates representing support, control and
initialization functions are mapped to the XScale processor.

An important consideration in real-time applications like
packet processing is worst case execution time (WCET) analysis.
Computing bounds on task execution in the system ensures that the
network processor can maintain a minimum line rate. This analysis
can be incorporated into our current compilation framework through
an iterative compilation design. Results of WCET analysis on code
produced by the Code generator can be fed back into the IPA and
global optimizer to modify compilation decisions or to notify the
programmer that the current program will be unable to achieve the
user-specified minimum performance targets.

5.2 Delayed-update software-controlled caching
Packet processing cores in the Intel IXP do not have hardware

caches. The common belief is that packet applications lack enough
interesting locality to dedicate die-area for caches. For example,
little locality exists in packets stored in DRAM since packets are
usually processed by one thread and then leave the system
completely. Recent studies, though, have shown packet programs
have locality in the application data structures. For example, Baer et
al [3] as well as Chiueh and Pradhan [6] demonstrated architectures
where caching can improve the forwarding rate of packet route
lookups.

The Shangri-La compiler utilizes existing IXP hardware to
implement a software-controlled cache that tries to exploit available
application caching opportunities without hardware caches. On the
IXP, the CAM (Section 3.3) can be used to do fast lookups for
available cache entries and cache lines can be stored in an ME’s
Local Memory which is available to all its threads. To identify good
caching candidates, expected hit rates and access frequencies for
global data access statistics from the Functional profiler are used.

To correctly maintain strict cache coherency, access to

software-controlled cache entries would have to be protected by
critical sections or the home location would have to be checked on
every access, both of which would be expensive and eliminate any
caching benefits.

Shangri-La generates a novel “delayed-update” software cache
that can be used in error-tolerant applications like packet
processing. Suitable caching candidates are frequently read data
structures that have high hit rates, but are infrequently written. A
frequently found pattern are structures that are frequently read by
the packet processing cores, but infrequently written by
maintenance, control or initialization code. Updates to these
structures are not protected by critical sections in the original code,
but rely on the coherency of a single atomic write to guarantee
correctness of an update.

A delayed-update cache only checks on every ith packet for
updates at a cache line’s home location, as shown in Figure 8. This
significantly reduces the frequency and cost of coherency checks,
but causes updates to cached entries to be delayed relative to
changes in the home location (e.g. in SRAM).

While incoherency is undesirable in normal applications,
delayed updates in network programs only causes packet delivery
errors. Fortunately, network protocols are tolerant of packet delivery
errors. For example, TCP, used for most connection-oriented
internet messages, can request retransmission of lost frames in a
stream [34]. Quality of service (QoS) routers explicitly drop frames
on selected packet streams to throttle bandwidths, and firewalls drop
selected packets to secure internal networks from the internet.

Code on store path
(infrequently executed)

Code on load path
(frequently executed)

O
rig

in
al

Ac

ce
ss

O
pt

im
iz

ed

Ac
ce

ss

dataglobal← val tmp ← dataglobal
... tmp ...

dataglobal← val
updateddata ← true

if count > check_limit then
count ← 0
if updateddata then

CLEAR_CACHE()
updateddata ← false

count++
if CACHE_HIT(data) then

tmp ← datacached
else

tmp ← dataglobal
... tmp ...

Figure 8 – Code for store and load paths for delayed-update
cache to dataglobal. Updates to the shared global are detected by

changes in the compiler-generated updateddata.
For a given application, a minimum per-packet load update

check rate (rload_check) can be calculated from a user-specified per-
packet maximum tolerable packet delivery error rate (rerror), the per-
packet rate of expected stores to the variable (rstore), and the per-
packet rate of expected loads to the variable (rload), as shown in
Equation 2. As expected, this equation suggests reductions in
expected stores or loads can reduce the minimum update check rate.

error

loadstore
checkload r

rrr ×≥_
 Equation 2

5.3 Optimized packet handling
Packet encapsulation (packet_encap(), packet_decap(),

packet_extend, packet_shorten), packet data access
(data_read, data_write) and metadata access (meta_read,
meta_write) primitives all significantly impact instruction and

229

memory counts. For example, each packet read and write requires
up to {38 + 5 * access_size_in_words} instructions and involves at
least one SRAM and one DRAM access. Given the frequency of
packet reads and writes in packet processing code, this overhead can
be significant relative to the 700 instructions / packet budget for
achieving 2.5Gbps on the Intel IXP2400. Given the frequency
packet handling operations occur in real application code and the
limited per-packet instruction and memory access budget available,
optimizing them can result in significant performance
improvements.

5.3.1 Packet access combining (PAC)
Network applications are naturally expected to access fields of

a packet during processing. Packet data are always stored in DRAM
memory on the IXP because packets can be extremely large and in
most cases, only the header of the packet is accessed by a network
application. According to Figure 6, though, if we simply map every
packet access to a DRAM access, packet forwarding rates would be
quickly limited by DRAM bandwidth.

To prevent this, an analysis incorporated in the IPA and global
optimizer and the Code Generation stages of the Shangri-La
compiler aggressively combines multiple protocol field accesses
into a single, wide DRAM access. For example, in Figure 2, the
packet fields dst and type can be accessed together using only one
DRAM access. This optimization can also be applied to combine
packet SRAM metadata accesses.

Packet accesses to be combined must satisfy three criteria:
� packet_handles must be equal.
� The address ranges of the packet data accesses must be

adjacent or within a specified bounded range. For the IXP,
which is optimized for wide memory accesses, even accesses
separated by 32- or 64-bits can benefit from combining.

� The combined data width can not exceed the width that can be
accessed by one memory instruction.
Packet access combining is performed in four major steps:

1. Use the criteria above to find the candidates among all packet
accesses in an aggregate.

2. Compute dominator and post-dominator graph. Packet
accesses to be combined must satisfy the dominance
relationship (e.g. only dominated reads may be combined).

3. Combined packet accesses must not violate any data
dependencies. A data-flow analysis identifies any
dependencies between protocol field accesses. In this analysis,
a read access is considered a use, and a write access is
considered a definition. Two read accesses can be combined if
there is no intervening definition to the first field before the
second read access. Two write accesses can be combined if
there is no intervening use of the first field before the second
write access.

4. Combine the packet accesses and eliminate the redundant ones.
The remaining packet reads and writes are updated with new
memory access offsets and sizes. The removed packet access
locations now read temporaries containing the pre-loaded
packet data or write temporaries that buffer data to be written
out the packet.

5.3.2 Static offset and alignment resolution (SOAR)
Statically determining packet access offsets is almost as

important to performance as packet access combining. In network
applications, the location and alignment of a given protocol’s field

is application-context specific. Consider the MPLS over Ethernet
packet [28] shown in Figure 9. These packets can have an arbitrary
number of MPLS headers attached to the payload (e.g. IPv4 header
and data). Consequentially, in applications that process MPLS
packets, the locations of the MPLS and IPv4 protocol fields relative
to the start of the packet cannot be determined statically. When
offsets of protocol fields are not static, the alignment of fields may
also be application dependent. Many processor architectures,
including IXP, can only perform word-aligned memory accesses.

ipv4
payload

ipv4
payload

ethernet
header

ipv4
headerm

pl
s

he
ad

er

m
pl

s
he

ad
er

14B 20B4B 4B

ethernet
header

ipv4
header

14B 20B

MPLS over
Ethernet

packet

IPv4 over
Ethernet

packet

Figure 9 – Illustrates when the offset and alignment of packet
fields can (normal IPv4) and cannot (MPLS) be resolved

statically.
Handling both unknown field offsets and alignments

dynamically at runtime adds significant overheads to packet access
primitives. While static alignment resolution can remove only a few
instructions, more than half of the 40+ instructions in a packet data
access can be removed with static offset resolution. Fortunately,
static offsets and alignments can be determined in many instances,
but they can only be determined by analyzing the entire packet
processing application.

┬offset

0 1 2 n…3
…

┴offset

Figure 10 – Lattice for static offset determination (SOD).
We developed a full-program analysis to determine, when

possible, static protocol field offsets and alignments for packet
accesses in a given packet application. Static offset and alignment
resolution (SOAR) is performed in eight major steps. The purpose
of the analysis is to statically determine the value of the head_ptr
(see Figure 3) at all packet access locations:
1. Identify all packet encapsulation (e.g. packet_encap() and

packet_decap()), packet data accesses (e.g. ph-

>protocol_field) and packet_handle assignments in the
application.

2. Initialize lattice values for static offset determination (SOD).
SOD lattice values, shown in Figure 10, correspond to current
protocol offset (c_offset) of a live packet_handle relative
to the initial head_ptr:

 At packet_handles entering the receive module (Rx),

 c_offset ← 0
 At all other program locations,

 c_offset ← ┬offset
3. Perform global (inter-procedural and intra-procedural) forward

flow analysis of lattice values for SOD. Computed values for
c_offset should be recorded at all packet access program
points. The monotonic flow function is described below:

230

 At packet_encap(),
 c_offsetout ← c_offsetin
 – BIT_OFFSET(packet_encap())

 At packet_decap(),
 c_offsetout ← c_offsetin
 + BIT_OFFSET(packet_decap())

 At control flow joins,
 c_offsetout ← n if all c_offsetin(i)

 = n | ┬offset
 ← ┴offset otherwise

4. Perform global backward flow analysis of lattice values using

the previous flow function, but only apply analysis at program
points where c_offset = ┬

offset. Updated values for
c_offset should be recorded at all packet access program
points. This backward path is used to propagate static offsets to
packets not entering via Rx (e.g. at packet_create() or
packet_copy()).

quadword

doubleword

┬alignment

┴alignment

word

short

byte

Figure 11 – Lattice for static alignment determination (SAD).

5. Initialize lattice values for static alignment determination
(SAD). Lattice values correspond to current protocol
alignment (c_alignment) of a live packet_handle relative
to the head_ptr:

 At packet_handles entering the receive module (Rx),
 c_alignment ← quadword

 At all other program locations,

 c_alignment ← ┬alignment

6. Perform global forward flow analysis of lattice values for

SAD. Computed values for c_alignment should be recorded
at all packet access program points. The monotonic flow
function is described below:

 At a packet_encap(),
 c_alignmentout ← ALIGNMENT(c_alignmentin
 - BIT_OFFSET(packet_encap()))

 At a packet_decap(),
 c_alignmentout ← ALIGNMENT(c_alignmentin
 + BIT_OFFSET(packet_decap()))

 At control flow joins,
 c_alignmentout
 ← a if all c_alignmentin(i)

 = a | ┬alignment
 ← MIN_ALIGNMENT(all c_alignmentin(i))

 otherwise

7. Perform global backward flow analysis of lattice values using
the previous flow function, but only apply analysis where
c_alignment = ┬alignment. Updated values for c_alignment
should be recorded at all packet access program points. This
backward path is used to propagate static offsets to packets not
entering via Rx (e.g. at packet_create() or
packet_copy()).

8. The results of these two dataflow analyses can be used to
optimize packet accesses and packet encapsulation in the
generated code:

 For all packet field accesses with a statically resolved constant offset

(c_offset != ┴offset), an optimized packet access sequence for a fixed
offset can be used in place of a one that must handle unknown offsets:

 OFFSET(field)
 ← c_offset + OFFSET_IN_PROTOCOL(field)

 For all packet field accesses with a statically resolved constant alignment

(c_alignment != ┴alignment) and an unknown offset (c_offset =
┴offset), an optimized packet access sequence for a fixed alignment can be used
in place of one that must handle unknown offsets and alignments:

 ALIGNMENT(field)
 ← ALIGNMENT(c_alignment
 + PROTOCOL _ALIGNMENT (field))

 For all packet encapsulations (packet_encap() and packet_decap())

with a statically resolved constant offset, code does not need to be generated to
update the head_ptr relative to the size of the current encapsulation. Prior to
join points where a static offset cannot be resolved (c_offset = ┴offset),
code must be inserted that updates the value of head_ptr to reflect its current
offset. Applying this transformation eliminates instructions and memory accesses
resulting from unnecessary updates of head_ptr.

5.3.3 Eliminating packet access primitives
In this section, we describe situations where program analysis

can be used to identify packet access primitives from a compiled
source application that can be completely eliminated in the
generated code.

The metadata construct is useful for packet processing
because it allows state to be attached to a packet as it flows through
different PPFs and modules. For example, in Figure 1, the l3_fwdr
module can attach a next hop ID to a packet, which the eth_encap
module uses to find the correct Ethernet header information to
encapsulate the packet with. Performance may suffer, though, if
metadata accesses are always converted into actual reads and writes
of metadata stored into SRAM (see Figure 3). Writes to SRAM are
only necessary if the metadata field might be accessed by another
ME. In many cases, after aggregation and extensive inlining, a
given metadata field may only be live within one PPF or aggregate.
In this case, the metadata access can be simply treated as a local
variable.

packet_encap() and packet_decap() allow arbitrary
layering of packet protocols and allow modular packet applications
to be written independent of how it may be encapsulated within
another application. For example, IPv4 applications can be written
to run on Ethernet or to run on any other physical layer protocol.
The encapsulation functions update the current head_ptr (stored in
the packet SRAM metadata) to reflect data prepended to a packet.
These encapsulation primitives add memory and instruction
overheads. Full support of these primitives is required to enable
handling and layering of arbitrary protocols (like the MPLS
application where an arbitrary number of MPLS packet headers can
be prepended), but compiler analysis can identify instances when
code generated for the primitive can be completely omitted:

231

� packet_encap() and packet_decap() can be eliminated in
conjunction with results of the SOAR analysis. If a value of
head_ptr has been statically determined at a
packet_encap() and packet_decap() location, the
head_ptr to the current protocol does not need to be
maintained and these primitives do not need to be represented
at all in the code.

� Paired encapsulation calls (packet_encap() →
packet_decap() or packet_decap() →
packet_encap()) between two protocols can be eliminated
if they are paired for every path between them and are called
within the same aggregate. In this case, the net result relative
to other aggregates is that the head_ptr remains unchanged.

5.4 Stack layout optimization
Implementing a normal program stack is not straightforward

due to the Intel IXP’s partitioned memory hierarchy and explicit
memory instructions for accessing each memory level. Local
program variables and spilled register temporaries are traditionally
stored in a frame of the program stack. Since Baker does not
support recursion and a static call graph can be constructed at
compile time, program stack locations could easily be assigned
statically to different memory locations.

In Shangri-La, though, the primary goal of stack layout
optimization is to allocate as many stack frames as possible to the
limited amount of fast memory. Only 48 words of Local Memory
are available to each of the eight threads for stack memory (the
remaining memory is reserved for other uses like software-
controlled caching). To accommodate programs with larger stacks,
the stack can grow into SRAM, but its high latency and the
consumed bus bandwidth would significantly impact performance if
used extensively for the program stack.

Since explicit instructions access each level of memory, the
compiler can, for every stack access, either generate instructions
and associated control to store in both types of memory, or statically
assign it to only one memory level. Since any control overhead
would add a significant number of dynamic instructions for every
stack access, we opted for the later solution.

In Shangri-La, an aggregate’s dispatch loop calls PPFs
(procedures in this discussion) that have packets arriving on its
input CCs (the procedure’s inputs), resulting in a very flat call
graph. Given this runtime model, we expect top level procedures in
the call graph to be executed most frequently. Hence, the basic stack
allocation strategy is to assign Local Memory to procedures higher
in the program call graph and assign SRAM memory when Local
Memory has been completely exhausted. If a procedure is called
from more than one place, its call stack is assigned to the minimum
stack location (in Local Memory or SRAM) that will never collide
with possibly live stack entries, depending on where it is called
from.

Our experiments so far suggest stack locations in SRAM can
significantly degrade performance. In initial implementations, the
L3-Switch application included over 100 dynamic SRAM accesses
per packet that came from the stack. Although stack space in Local
Memory is small, the call stack in this application also did not
exceed 5 frames. It was soon discovered that stack accesses were
being mapped to SRAM because the Local Memory stack locations
were poorly utilized.

One problem was that initially, to easily accommodate the
IXP’s offset addressing mode, the stack has a minimum 64B (16
words) frame size. On the IXP, stack entries can be accessed in the
same cycle only by using offset-based addressing. In offset-based

addressing, the address pointer used to access Local Memory must
to be aligned so that the offset can simply be OR’ed to the address
pointer (e.g. $SP[3] is equivalent to *($SP | (3 << 2)). An
improved stack layout was implemented that eliminated this
minimum stack frame size. Here, the compiler maintains two stack
pointers, the physical ($pSP) and virtual ($vSP) stack pointers, as
shown in Figure 12. The physical stack pointer is always properly
aligned and the virtual one is sized to the procedure’s required
minimum. In the final code, only the physical stack pointer is
generated, but the virtual stack pointer is used to calculate the
correct offset for a stack access relative to the physical stack pointer.

We also confirmed that aggressive inlining improved
utilization of the stack. Merging stack frames together eliminates
frame boundaries and stack slots reserved for call actual parameters.
It also increases global optimization opportunities, which decreases
the number of stack slots reserved for temporaries. Both frame size
optimizations and aggressive inlining are essential for keeping the
runtime stack completely in Local Memory and for achieving good
performance on larger network applications.

32

16

8

0

24

$vSP (Func A)

$pSP (Func C)

Function B
(10 words)

$pSP (Func A & B) Function C
(6 words)

Function A
(3 words)

16-word aligned stack

Sample accesses

1 Access element 3 in frame 1
= $vSP[2] = $pSP[15]

2 Access element 5 in frame 2
= $vSP[4] = $pSP[7]

$vSP (Func B)

$vSP (Func C)

1

2

Function A
(3 words)

Function B
(10 words)

Function C
(6 words)

Call graph Stack layout

Figure 12 – Illustrates our technique for minimizing call stack

frame sizes.

6. Experimental Results
To evaluate code generated from the Shangri-La compiler, we

performed experiments on an Intel IXP2400 evaluation board with
8MB SRAM, 64MB DRAM and three 1Gbps optical ports. An
IXIA packet generator with three 1Gbps optical ports (to support a
maximum of 3Gbps throughput) was used to transmit packets and
collect statistics.

6.1 Benchmark applications
Three network applications written in Baker were evaluated,

L3-Switch (3126 lines), Firewall (2784 lines) and MPLS (4331
lines).

L3-Switch [27] bridges and routes IP packets. The critical path
for L3-Switch is the route lookup for the next hop router ID. Next
hop IDs are found by traversing a tree data structure (often called a
trie) to match the longest matching string of bits from the most
significant bits of the destination IP address and retrieving the next
hop ID associated with that match.

Firewall sits between an internal network and an external
network and prevents selected packets from passing. A classifier
attaches flow IDs to packets by matching several packet fields (e.g.

232

source and destination IPs, source and destination ports, protocol
and type of service (TOS)) to an ordered list of user-defined
patterns. Selected flow IDs are then dropped by the Firewall.

Multiprotocol Label Switching (MPLS) [28] routes according
to labels, instead of destination IPs, attached to packets entering the
domain. Routing with labels reduces hardware requirements for
routing and facilitates high-level traffic control that cannot be
achieved by per-hop IP routing.

L3-Switch and MPLS were evaluated using NPF packet traces
[27][28]. We developed our own packet traces for evaluating
Firewall.

6.2 Performance Evaluation
Packet forwarding rates and dynamic memory accesses for

each application were collected as optimizations were successively
enabled. Optimization ordering was done in a way to highlight each
optimization, since the benefits of some of the optimizations depend
on each other. All optimizations are disabled in the BASE
configuration, -O1 adds typical scalar optimizations, -O2 inlines
base packet handling routines, PAC enables packet access
combining, SOAR enables static offset and alignment resolution, PHR
removes unnecessary packet handling support code and SWC enables
software-controlled caching.

Table 1 – Dynamic memory accesses per packet.

P acket A pplicat io nScratch

SR
A

M

D
R

A
M

Scratch

SR
A

M

Total

L3 -Switch
 + SW C 2.0 3.0 2.0 0.0 8.0 15.0
 + PH R 2.0 3.0 2.0 1.0 11.0 19.0
 + PA C 2.0 9.0 3.0 1.0 11.0 26.0
 + -O 1 2.0 35.0 29.0 1.0 12.0 79.0
BA SE 2.0 35.0 29.0 1.0 22.0 89.0

F irewall
 + SW C 2.0 1.0 1.0 0.3 14.0 18.3
 + PH R 2.0 1.0 1.0 0.3 14.0 18.3
 + PA C 2.0 5.0 1.0 0.3 14.0 22.3
 + -O 1 2.0 40.6 25.6 0.3 30.8 99.3
BA SE 2.0 40.6 25.6 0.6 32.5 101.3

M P LS
 + SW C 2.0 7.0 2.0 0.0 5.0 16.0
 + PH R 2.0 7.0 2.0 2.0 9.0 22.0
 + PA C 2.0 14.0 3.0 2.0 8.0 29.0
 + -O 1 2.0 23.0 16.0 2.0 9.0 52.0
BA SE 2.0 23.0 16.0 2.0 14.0 57.0

For all configurations except three, the program’s entire critical

packet pipeline was mapped to one ME and then replicated up to
five times on the other MEs. The MPLS O1 pipeline and the L3-
Switch and MPLS BASE pipelines had to be mapped to two MEs due
to ME code size constraints. This pipeline was then replicated two
more times on the remaining four MEs. In the most optimized case,
we have been unable so far to map the critical path of the
benchmark applications to more than one ME. This is due in part to
the fact that today, network forwarding applications are still
designed to be simple and have short critical paths so that they can
handle high packets rates.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6MEs

Fo
rw

ar
di

ng
 ra

te
 (G

bp
s)

 + SWC + PHR + SOAR + PAC

 + -O2 + -O1 BASE

Figure 13 – Packet forwarding rates for L3-Switch.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6MEs

Fo
rw

ar
di

ng
 ra

te
 (G

bp
s)

 + SWC + PHR + SOAR + PAC

 + -O2 + -O1 BASE

Figure 14 – Packet forwarding rates for Firewall.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6MEs

Fo
rw

ar
di

ng
 ra

te
 (G

bp
s)

 + SWC + PHR + SOAR + PAC

 + -O2 + -O1 BASE

Figure 15 – Packet forwarding rates for MPLS.
Table 1 shows the average per-packet dynamic memory

accesses for each application as relevant optimizations are enabled
(-O2 and SOAR only affect dynamic instruction counts and have no
effect on memory access counts). The effects of stack layout
optimization described in Section 5.4 are already included in these
reported numbers. Without stack layout optimization, even simple
programs would generate too many SRAM accesses to achieve
respectable packet forwarding rates. The significant impact of PAC
is evident in this table from the large reduction in packet handling
SRAM and DRAM accesses. In the case of Firewall, PAC even aids
the scalar optimizer by exposing additional opportunities to
eliminate application SRAM accesses.

Figures 13-15 display packet forwarding rates on minimum

233

sized 64B packets. Each curve represents the effect of successive
optimizations for one to six MEs enabled. Code generated by
Shangri-La for all three applications have successfully achieved
100% forwarding rates at 2.5Gbps, which is what the IXP2400
designed for and is the same throughput target achieved by hand-
coded assembly versions of the applications written specifically for
the processors.

The figures further show that PAC improved packet forwarding
the most. While PAC eliminates instructions, its largest effect is on
reducing DRAM and SRAM accesses. As Figure 6 suggested
earlier, having more than just a few DRAM accesses limits the
theoretical forwarding rate of the system by saturating the memory
bandwidth. This saturation is evidenced by the non-linear increase
and flattening in forwarding rates with increasing numbers of MEs
enabled for each of the optimization curves. Without memory
bandwidth effects, forwarding rates should always increase linearly
with more MEs enabled and eliminated instructions should always
improve performance with a constant proportion with more MEs
enabled.

In the BASE, -O1 and –O2 configurations, forwarding rate
flattening occurs with fewer MEs because there are more memory
accesses per packet. The PAC, SOAR, PHR and SWC configurations
generate fewer memory accesses per packet and only saturate
memory bandwidth with at least four MEs enabled.

-O1 and SOAR are important to reducing per-packet instruction
counts. Reduced instruction count is important because its effect is
multiplied as more MEs are enabled. –O1 optimizations enable
MPLS’s and L3-Switch’s critical path to fit on one ME instead of
two. SOAR significantly improves forwarding rates on L3-Switch
and MPLS. Instruction count reductions can be best seen with only
one or two MEs enabled on the L3-Switch and MPLS applications.
At these points, memory bandwidth limits are not being hit and
improvements in forwarding rates are purely due to instruction
count reductions.

The effects of –O2, PHR and SWC appear to have limited effects
on application forwarding rates, but PHR’s and SWC’s ability to
reduce dynamic SRAM and Scratch Memory accesses are clearly
evident in Table 1. SWC successfully caches two small frequently-
accessed data structures in L3-Switch and MPLS.

Our experiments suggest only a rough relationship between the
number of memory accesses and the IXP2400’s maximum
achievable packet forwarding rates. For example, Figure 6 showed
that the hardware could achieve 2.5Gbps only if there was 1 DRAM
access. Both L3-Switch and Firewall achieve approximately
2.7Gbps, and MPLS achieves 3Gbps, even though all these
applications have approximately the same number of DRAM and
SRAM accesses in the most optimized configuration.

These inconsistencies suggest that although there is a clear
trend between memory accesses and achievable packet forwarding
rates, there are also important secondary factors. One secondary
factor is the impact of the memory access width on packet
forwarding rates, shown earlier in Figure 6. MPLS probably
achieves higher packet forwarding rates because it issues narrower
memory accesses to DRAM than the other two applications (24B
vs. 40B). Another possible factor for the discrepancy is the balance
between computation and memory accesses. For example, the
experiment in Figure 6 had almost no computation, but achieved
lower packet forwarding rates than real applications. In this case,
the amount of computation and memory access overlap between
threads on the same ME may be reduced because all the threads are
waiting on memory.

7. Related Work
Click [20] is the most relevant and established academic C++

programming model and environment for building packet
processing applications on a single, general-purpose, processor.
Baker bears many similarities to Click, especially in regards to its
modeling of communication channels (CCs). The original Click
project focused more on the language design than performance: they
used a standard C++ compiler and were targeting a general-purpose
uniprocessor. Due to architectural and technology differences, it is
difficult to make any performance comparison between our system
and theirs. Kohler, Morris and Chen [21] later described a source-
to-source tool for optimizing Click module configurations. Most of
the optimizations they implemented to eliminate modular
inefficiencies in a L3-Switch resembled traditional scalar compiler
optimizations. The click-align optimizer addressed similar packet
data alignment issues faced by our system.

Additional work has also been done by other researchers to
extend the performance of Click. NP-Click [31] was a project to
implement Click on the Intel IXP by replacing code in Click
modules with ME instructions. This modularization resulted in a
35% reduction of the packet forwarding rate on minimum sized 64B
packets compared to a hand-coded implementation. SMP Click
extended the Click runtime system to run an unmodified Click
configuration on a SMP [5].

There has been a lot of research recently specifically on
programming the IXP, although it has mostly focused on low-level
compilation issues. George and Blume [12] developed a network
programming framework and a network application language,
Nova, but their language is less ambitious and the compiler has
mostly focused on scalar optimizations for the IXP. Li and Gupta
[24] developed an algorithm that lays out local variables based on
access patterns to take better advantage of
autoincrement/autoincrement addressing modes available on the
IXP. Zhuang and Pande [38] described three different approaches
for resolving ME register bank conflicts during register allocation.
In a later paper [37], they described how to share registers across
threads in a ME to make better use of available architectural
registers. Kim et al. [22] described a retargetable compiler
infrastructure for network processors, but their target processor was
the Paion PPII. Much like our work, they concluded that aggressive
reduction of memory accesses is critical in packet processors that do
not have caches.

In addition to assemblers, Intel currently has a product toolkit
for developing network applications in a C-like language [18]. A
newer version of the toolkit is also being developed that supports an
auto-partitioning mode that can automatically construct pipeline
stages from a program [10]. This compiler achieves similar
optimization goals, but assumes a different starting point for the
programmer. While the Shangri-La compiler encourages
programmers to write small PPFs, which are merged or duplicated
by the compiler, they assume programmers write large procedures
that are partitioned into stages by the compiler.

Both of these commercial compilers [10][18] remove
scheduling and register allocation challenges of programming in
assembly, but mapping data to memory levels, managing threads
and accessing specialized hardware (e.g. hardware queues and
CAM) are still the programmer’s responsibility. Non-inlined
function calls are converted into branches and then registers are
globally allocated. Automatic spilling of live registers is supported,
but only to one level of memory specified by the programmer [17].

There are a few publications worth mentioning describing
work relating to the optimizations highlighted in this paper.

234

Udayakumaran and Barua [35] also proposed a form of software-
controlled caching. In their scheme, the software-controlled cache is
used to store register spills to the program stack and prevent it from
polluting the hardware data cache. Because our scheme selectively
caches global data, it requires a more complex scheme to identify
good caching candidates and selectively generate caching code.
Additionally, our software-controlled cache also implements a
delayed-update coherence mechanism. In comparison, they can
completely ignore coherency because they only cache a thread’s
private stack.

Davidson and Jinturkar [9] described a memory coalescing
algorithm for general purpose processors similar to our packet
access combining (PAC). This algorithm replaced narrow array
access with doubleword accesses in unrolled loops. Memory
coalescing implemented extensive profitability checks to factor the
realignment costs and limited packing width. Packet access
combining is almost always profitable given the high cost of
DRAM access on the IXP. Both algorithms perform similar scalar
safety checks, but memory coalescing must also handle potential
array aliasing. Gupta, Mehofer and Zhang [14], and Stephenson,
Babb and Amarasinghe [33] described frameworks for bit-level
analysis and optimization that may be useful for analyzing network
packet accesses, but neither of these works describe any ideas that
bear any resemblance to our optimizations of packet access
primitives.

Finally, Avissar, Barua and Stewart [2] discussed techniques
for mapping a program stack to heterogeneous memories. Our work
is similar to their work in that both have static, not dynamic,
mappings to memory levels. In their approach, both global and
stack memories are allocated by solving a large linear programming
system that incorporates profiling. We also use profiling data for
mapping global data structures, but we allocate stack memory and
global data separately, and our stack allocation strategy primarily
relies on the static program call graph. Avissar, Barua and Stewart’s
work also does not need to deal with the complexities of stack
frame alignment.

8. Conclusions
This paper addresses the challenges of achieving hand-tuned

performance on highly resource-constrained network processors on
code compiled from high-level languages. We presented a complete
framework for aggressively compiling network programs using both
traditional and specialized optimizations techniques to aggressively
reduce both instruction and memory access counts. Detailed
performance evaluations of compiler generated code of three
popular network applications on real hardware show the importance
of these optimization techniques in achieving 100% packet
forwarding rates at 2.5Gbps.

For future work, we will continue with efforts to improve
compiled program performance and to try more network
applications on our system. We are also considering if some of the
highlighted optimizations can be applied to deal with the difficulties
of compiling for future general-purpose chip multiprocessors with
heterogeneous cores and memories.

9. Acknowledgements
This work would not be possible without significant

contributions from Erik Johnson, Aaron Kunze, Steve Goglin,
Vinod Balakrishnan, Arun Raghunath and Robert Odell at Intel
Communications Technology Lab (CTL); Institute of Computing
Technology (ICT) at Chinese Academy of Science; Prof. Harrick

Vin and his research group at UT Austin; and our intern Astrid
Wang.

10. References
[1] Amaral, J.N., Gao, G.R., Dehnert, J. and Towle, R. The SGI

Pro64 Compiler Infrastructure: A Tutorial. In PACT’00,
Philadelphia, PA, October 2000.

[2] Avissar, O., Barua, R. and Stewart., D. An optimal memory
allocation scheme for scratch-pad-based embedded systems. In
ACT Transactions on Embedded Computing Systems (TECS),
1(1) pp. 6-26, November 2002.

[3] Baer, J.L., Low, D., Crowley, P. and Sidhwaney, N. Memory
Hierarchy Design for a Multiprocessor Look-up Engine. In
PACT’03, New Orleans, LA, September 2003.

[4] Broadcom Corporation. The Sibyte BCM1250 Processor.
http://sibyte.broadcom.com/public/index.html

[5] Chen, B. and Morris, R. Flexible Control of Parallelism in a
Multiprocessor PC Router. In USENIX 2001 Annual Technical
Conference, Boston, MA, June 2001.

[6] Chiueh, T. and Pradhan, P. High-performance IP routing table
lookup using CPU caching. In IEEE Infocom’99, New York,
NY, March 1999.

[7] Chow, F., Chan, S., Kennedy, R., Liu, S.M., Lo, R. and Tu, P.
A new algorithm for partial redundancy elimination based on
SSA form. In PLDI’97, Las Vegas, NV, June 1997.

[8] Cooper, K. and Harvey, T. Compiler-Controlled Memory. In
ASPLOS-VIII, San Jose, CA, October 1998.

[9] Davidson, J. and Jinturkar, S. Memory Access Coalescing: A
Technique for Eliminating Redundant Memory Accesses. In
PLDI’94, Orlando, FL, June 1994.

[10] Dai, J., Huang, B., Li, L. and Harrison, L. Automatically
Partitioning Packet Processing Applications for Pipelined
Architectures. To appear in PLDI’05, Chicago, IL, June 2005.

[11] Diwan, A., McKinley, K. and Moss, E. Type-Based Alias
Analysis. In PLDI’98, Montreal, Canada, June 1998.

[12] George, L. and Blume, M. Taming the IXP Network
Processor. In PLDI’03, San Diego, CA, June 2003.

[13] Goglin, S., Johnson, E.J. and Vin, H. Baker: A Packet
Processing Programming Language for Highly Concurrent
Hardware. Under preparation for submission.

[14] Gupta, R., Mehofer, E. and Zhang, Y. A Representation for Bit
Section based Analysis and Optimization. In International
Conference on Compiler Construction, Grenoble, France,
April 2002.

[15] IBM. The PowerNP architecture.
http://www.hifn.com/products/5np4g.html.

[16] Intel Corporation. Intel IXP2400 Network Processor:
Hardware Reference Manual. October 2002.

[17] Intel Corporation. Microengine Version 2 (MEv2):
Microengine C Compiler Coding Considerations. June 2003.

[18] Johnson, E.J. and Kunze, A. IXP2400/2800 Programming:
The Complete Microengine Coding Guide. Intel Press,
Hillsboro, OR, April 2003.

[19] Ju, R., Chan, S. and Wu, Chengyong. Open Research
Compiler for Itanium Processor Family. Tutorial in MICRO-
34, Austin, TX, December 2001.

[20] Kohler, E., Morris, R., Chen, B., Jannotti, J. and Kaashoek,
M.F. The Click Modular Router. In ACM TCS, 18(3) pp. 263-
297, August 2000.

235

[21] Kohler, E., Morris, R. and Chen, B. Programming language
optimizations for modular router configurations. In ASPLOS-
X, San Jose, CA October 2002.

[22] Kim, J., Jung, S. and Park, Y. Experiences with a Retargetable
Compiler for a Commercial Network Processor. In CASES’02,
Grenoble, France, October 2003.

[23] Kulkarni, C., Gries, M., Sauer, C. and Keutzer, K.
Programming Challenges in Network Processor Deployment.
In CASES’03, San Jose, CA, October 2003.

[24] Li, B. and Gupta, R. Simple Offset Assignment in Presence of
Subword Data. In CASES’03, San Jose, CA, October 2003.

[25] Narlikar, G. and Zane, F. Performance Modeling for Fast IP
Lookups. In SIGMETRICS’01, Cambridge, MA, June 2001.

[26] Intel Corporation. Microengine Version 2 (MEv2):
Microengine C Compiler Coding Considerations. June 2003.

[27] Network Processing Forum. IP Forwarding Application Level
Benchmark.
http://www.npforum.org/techinfo/ipforwarding_bm.pdf

[28] Network Processing Forum. MPLS Forwarding Application
Level Benchmark and Annex.
http://www.npforum.org/techinfo/MPLSBenchmark.pdf

[29] PMC-Sierra. MIPS-based™ Processors.
http://pmc-sierra.com/processors/

[30] Rosen, E., Viswanathan, A. and Callon, R. RFC 3031 –
Multiprotocol Label Switching Architecture. IETF, January
2001.

[31] Shah, N., Plishker, W. and Keutzer, K. NP-Click: A
Programming Model for the Intel IXP1200. In 2nd Workshop
on Network Processors (NP-2), Anaheim, CA, February 2003.

[32] Shah, N., Plishker, W. and Keutzer, K. Comparing Network
Processor Programming Environments: A Case Study. In 2004
Workshop on Productivity and Performance in High-End
Computing (P-PHEC), HPCA-10, Madrid, Spain, February
2004.

[33] Stephenson, M., Babb, J. and Amarasinghe, S. Bitwidth
Analysis with Application to Silicon Compilation. In PLDI’00,
Vancouver, BC, June 2000.

[34] W.R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley, Boston, MA, 1994.

[35] Udayakumaran, S. and Barua, R. Compiler-Decided Dynamic
Memory Allocation for Scratch-Pad Based Embedded
Systems. In CASES’03, San Jose, CA, October 2003.

[36] Vin, H., Mudigonda, J., Jason, J., Johnson, E.J., Ju, R., Kunze,
A. and Lian, R. A Programming Environment for Packet-
processing Systems: Design Considerations. In 3rd Workshop
on Network Processors & Applications, Madrid, Spain,
February 2004.

[37] Zhuang, X. and Pande, S. Balancing Register Allocation
Across Threads for a Multithreaded Network Processor. In
PLDI’04, Washington, DC, June 2004.

[38] Zhuang, X. and Pande, S. Resolving Register Bank Conflicts
for a Network Processor. In PLDI’03, New Orleans, LA, June
2004.

236

