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Abstract 

Programming network processors is challenging. To sustain 
high line rates, network processors have extremely tight memory 
access and instruction budgets. Achieving desired performance has 
traditionally required hand-coded assembly. Researchers have 
recently proposed high-level programming languages for packet 
processing, but the challenges of compiling these languages into 
code that is competitive with hand-tuned assembly remain 
unanswered. 

This paper describes the Shangri-La compiler, which accepts a 
packet program written in a C-like high-level language and applies 
scalar and specialized optimizations to generate a highly optimized 
binary. Hot code paths identified by profiling are mapped across 
processing elements to maximize processor utilization. Since our 
compilation target has no hardware caches, software-controlled 
caches are generated for frequently accessed application data 
structures. Packet handling optimizations significantly reduce per-
packet memory access and instruction counts. Finally, a custom 
stack model maps stack frames to the fastest levels of the target 
processor’s heterogeneous memory hierarchy. 

Binaries generated by the compiler were evaluated on the Intel 
IXP2400 network processor with eight packet processing cores and 
eight threads per core. Our results show the importance of both 
traditional and specialized optimization techniques for achieving the 
maximum forwarding rates on three network applications, L3-
Switch, MPLS and Firewall. 

 
Categories and Subject Descriptors: D.3.2 [Programming 
Languages]: Language Classifications – data-flow languages, 
specialized application languages; D.3.4 [Programming 
Languages]: Processors – code generation, compilers, 
optimization. 

General Terms Algorithms, Performance, Design, Languages. 

Keywords Packet processing, network processors, chip 
multiprocessors, throughput-oriented computing, program 
partitioning, dataflow programming. 

1. Introduction 
In spite of the time and effort required, network processors like 

the Intel IXP [16], IBM PowerNP [15], Broadcom BCM1250 [4] 
and PMC Sierra RM9000 [29] have been mostly programmed using 

hand-coded assembly. Networks have mostly relied on the 
widespread use of a few core packet programs. To achieve high line 
rates, though, a network program usually has very tight memory 
access and instruction count budgets. In the past, careful hand-
optimization of assembly code has been the most effective means of 
achieving the required performance given the small kernels and 
difficult resource constraints.  

As networks have evolved, so has the code running them, 
becoming larger, more diverse and complex. More and more 
network protocols are being developed for specialized applications 
(e.g. wireless, VoIP, proxies, network-attached storage). 
Enhancements to base protocols have been implemented to satisfy 
load balancing, security and reliability requirements. Shipped 
network hardware must operate correctly in an increasing number of 
different configurations. 

Hand-coded assembly has become a hindrance to developing 
new network applications and updating existing applications. 
Reusing common routines written in assembly in different contexts 
is difficult, debugging assembly code is extremely tedious and 
maintaining assembly code is a time-consuming effort. Even state-
of-the-art tools that abstract some of the assembly programming 
details still expose to programmers the multi-threaded packet 
processing cores, heterogeneous memories and custom 
communication topologies found on network processors. 

Shangri-La, which consists of a programming language, a 
compiler and a runtime system, simplifies development and 
accelerates performance tuning of network applications. The 
Shangri-La compiler accepts a program written in Baker, a high-
level, domain specific language for designing modular network 
applications. Aggressive optimizations are applied so that code 
written in the high-level language can achieve performance 
comparable to hand-tuned assembly code. Although the compiler 
currently targets the Intel IXP multi-core network processor, many 
of the techniques we describe are generally applicable since they 
deal with the difficulties of targeting heterogeneous multiprocessors 
and heterogeneous memories, and of optimizing network 
application constructs. 

The primary contributions of this paper are: 
� Demonstrated ability to achieve comparable hand-tuned 

performance on highly resource-constrained network 
processors from code compiled from a high-level language. 

� A complete framework for aggressively compiling network 
programs using both traditional and specialized optimizations 
techniques. Hot code paths identified from profiling are 
mapped across processing elements to maximize packet 
forwarding rates. Delayed-update software-controlled caches 
are automatically generated for unprotected, error-tolerant 
application data structures, useful for network processors that 
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have no hardware caches. Packet handling optimizations help 
reduce per-packet memory access and instruction counts. A 
custom stack model maps program stack frames to the fastest 
levels of the target processor’s heterogeneous memory 
hierarchy. 

� Detailed performance evaluation of compiler generated code 
on real IXP hardware of three popular network applications, 
L3-Switch, MPLS and Firewall. The results show the 
importance of traditional and specialized optimization 
techniques in achieving maximal packet forwarding rates.  
The remainder of this paper details the major components of 

the Shangri-La system and provides results from running our 
compiler-generated code on real hardware. Section 2 introduces the 
Baker network programming language. Section 3 presents the 
architecture and performance characteristics of Shangri-La’s target 
hardware, the Intel IXP. Section 4 introduces the Shangri-La 
compilation framework and the runtime support components. 
Section 5 details important optimization techniques implemented in 
the Shangri-La compiler. Section 6 presents the results of running 
three compiled network applications on real hardware. Section 7 
describes related work in compiling for network processors and 
Section 8 summarizes our findings. 

2. Baker Programming Language 
Currently, most network processors are programmed by hand 

using assembly. Assembly programming is undesirable for many 
reasons. It is not portable between different ISAs. Debugging and 
performance-tuning assembly code is a tedious and time-consuming 
effort. Finally, assembly programming requires extremely skilled 
programmers, since it exposes all the hardware resources. An IXP 
programmer must deal explicitly with heterogeneous memories, 
inter-processor communication, multi-processing and multi-
threading in addition to the usual complexities.  

Even in state-of-the-art tools that allow network processor 
code to be written in a C dialect [17][18], these aspects of the 
hardware are configured by the programmer through manual 
insertion of directives and keywords. For example, keywords 
indicate physical memory levels for referred variables and intrinsics 
represent accesses to specialized inter-processor communication 
hardware. Likewise, data packing and alignment optimizations are 
contingent upon input from the programmer. These language 
extensions impose significant responsibilities on the programmer 
and limit portability of the written programs. 

Baker [13] is a platform-independent language for network 
application development. A programmer writes packet-processing 
applications to an abstract machine with a single level of memory. 
Baker looks like C, but includes constructs to enable development 
of large applications from reusable, modular components and to 
simplify the expression of network programs. Aside from this basic 
model, a programmer must only understand that the generated code 
may run on a multi-core processor and must explicitly identify any 
critical sections. 

2.1 Modular framework 
Baker programs are structured as a dataflow of packets from 

receiver (Rx) to transmitter (Tx), as shown in Figure 1. A module is 
a container for holding related packet processing functions (PPFs), 
wirings, support code and shared data. PPFs contain the C-like code 
that performs the actual packet processing. PPFs can hold 
temporary local state and access global data structures. Packets 
enter and exit PPFs through channel endpoints. The input and 
output channel endpoints of PPFs wired together form 

communication channels (CCs), shown as directed arrows in the 
figure. CCs are asynchronous and can be thought of as queues or 
FIFOs. Output endpoints are also immediate-release. This means 
that when a PPF places data on an output, the data is released onto 
the CC and is no longer accessible to the PPF. A piece of sample 
Baker code is shown in Figure 2. 
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Figure 1 – The L3-Swtich Baker program containing Modules 
(.m), PPFs (.p) and CCs (directed arrows). L3-Switch bridges 

and forwards IP packets. 
l3_switch.l2_clsfr.ppf( ether_pkt * ph )
{

int is_arp = ( ph->type == ETH_TYPE_ARP );
int forward = ( ph->dst == 

mac_addrs[ph->metadata.rx.port] );
if( is_arp ){

channel_put( arp_cc, packet_copy( ph ));
}
if( forward ){

ipv4_pkt iph = packet_decap( ph );
channel_put( l3_forward_cc, iph );

}
else{

channel_put( l2_bridge_cc, ph );
}

}  
Figure 2 – l2_clsfr PPF in the l3_switch module 

demonstrating packet (ph->protocol_field) and metadata 
(ph->metadata.metadata_field) accesses, use of packet 

primitives (packet_decap() & packet_copy()) and 
placement of packets on CCs (channel_put()).  

2.2 Packet support 
Designing packet and packet protocol support is especially 

tricky. Protocol developers must be able to add new protocol types 
easily. There must also be a way to associate state with a packet for 
use by the network application that is not stored in the packet. 
Component developers must be insulated from lower-layer protocol 
encapsulations and packet representations. Finally, manipulations 
on packets must be computationally efficient. 

A packet’s data can be thought of as a string of bits. How those 
bits are interpreted is determined by protocols. A protocol developer 
creates new protocols by describing them using Baker’s protocol 
construct, illustrated in Figure 3. The demux pseudo field specifies 
the protocol’s size in a particular packet. 

Packet metadata can be used to store state associated with a 
packet, but not contained within a packet. It is particularly useful to 
a network programmer for storing state associated with a packet 
generated in one PPF and used later by another PPF. 

225



 

ethernet
header

ipv4
header

packet_decap()

head
ptr

user-defined
metadata

packet_handle

tail
ptr

packet_shorten()

packet_extend()

packet_encap()

SRAM
(metadata)

DRAM
(data)

protocol ether {
dst : 48;
src : 48;
type : 16;
demux{ 14 };

};

protocol ipv4 {
ver : 4;
length : 4;
...(fields omitted)
src : 32;
dst : 32;
demux{ length << 2 };

};

 
Figure 3 – Example protocols and illustrations describing the 

effects of packet primitives on a packet_handle.  

 
Baker programs manipulate packets through a 

packet_handle. The packet_handle points to packet metadata 
in SRAM. The packet metadata holds user-defined metadata and 
pointers to the actual packet data in DRAM. 

Robust encapsulation primitives make it easy to layer different 
packet protocols. packet_decap(), which internally uses the 
result of the demux field, is used to access the encapsulated payload. 
Equivalently, one can encapsulate one protocol inside another using 
packet_encap(). packet_add_tail() and 
packet_remove_tail() are primitives used to append data to a 
packet. The effects of these primitives on a packet_handle are 
shown in Figure 3. 

There are other features of Baker used to support various 
packet protocols [13] that are beyond the scope of this paper.  

2.3 Language restrictions 
Baker imposes several language restrictions to reduce analysis 

complexity and simplify code generation. Requiring type-alias-free 
pointers, which prevent explicit typecasts to change the 
interpretation of a given memory location [11], simplifies alias 
analysis. Recursion for code within a PPF is not supported for two 
reasons: our survey of network applications indicates recursion is 
not required; and it would complicate and add overhead to runtime 
stacks on processors like the Intel IXP with uncached, 
heterogeneous memories. 

3. IXP Network Processor 
While the optimizations presented in the paper may be 

applicable to other network processors, embedded systems or 
multiprocessors, the Shangri-La compiler currently targets the Intel 
IXP family of network processors [16]. This section highlights the 
hardware’s many exposed complexities that make it difficult to 
program or target with a high-level compiler. 

3.1 Processor cores 
Intel IXP processors are specialized chip-multiprocessors, with 

one Intel XScale™ core and multiple microengines (MEs) [16]. The 
XScale processor is used to process control packets, execute non-
critical application code, and handle initialization and management 
of the network processor. 

The ME cores are primarily responsible for processing packets. 
The IXP2400 used for experiments in the paper, shown in Figure 4, 
has eight MEs. Other IXP processors (e.g. IXP1200 or IXP2800) 

that have different clock speeds and number of cores can also be 
targeted by Shangri-La. MEs are lightweight, multi-threaded, 
pipelined processors running a special instruction set designed for 
processing packets. Each ME has its own instruction store, 
independent of other data memory, that holds all the code for 
threads running on that core. This fast, uncached memory can only 
hold 4096 40-bit instructions, but it is large enough to hold critical 
instruction paths for most network applications. 
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Figure 4 – Block diagram of the IXP2400 showing 

characteristics of the XScale core, MEs and various memories. 

 
One ME has support for four or eight hardware-assisted 

threads of execution. Threads on an ME are non-pre-emptive: 
executing code must give up control explicitly, on a memory 
instruction or a context switch instruction, before another thread can 
run. A thread arbiter swaps between ready threads in a round-robin 
order. This thread model simplifies synchronization within an ME 
and eliminates additional interrupt-handling hardware, but burdens 
the programmer with the additional responsibility of handling 
context switches.  

3.2 Memory architecture 
Intel IXPs have heterogeneous and uncached memory 

hierarchies. The four separate levels of memory in the IXP are 
Local Memory, Scratch Memory, SRAM and DRAM. The sizes 
and access latencies of the memories are shown in Figure 4. With 
current IXP programming tools, each different level of memory 
must be accessed explicitly by the programmer. Memory access 
instructions include a ref_cnt parameter that facilitates wide 
memory accesses. With the ref_cnt parameter, 4B to 32B of 
Scratch Memory or SRAM, and 8B to 64B of DRAM can be 
accessed with only one memory instruction. These wide memory 
accesses are implemented as reads and writes to a contiguous 
sequence of registers. 

Local Memory is treated differently from the other levels of 
memory. Local Memory is very fast, but is private to a given ME. A 
subset of Local Memory can be accessed directly from any 
instruction without a load delay using 8- or 16- word offset 
addressing. The entire 640 words of Local Memory can be accessed 
from any thread in an ME with three cycles of latency. 

Notably absent in the IXP are any caches for the MEs. In 
general, network processor architects have used die area and power 
budgets for multithreading and more processing cores instead of 
cache memory. This has been motivated by the observation that 
packets have little or no temporal or spatial memory locality. 
Additionally, caches are undesirable in embedded systems and in 
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network applications because they introduce non-deterministic 
timing effects into a program’s behavior. For example, it is difficult 
to guarantee a minimum line rate for a running network application 
if it is affected by a cache hit rate. 

3.3 Specialized hardware 
Although MEs don’t contain traditional caches, they do have 

hardware which can be used to implement a software-controlled 
cache. Each ME contains a small 16-entry content-addressable 
memory (CAM). Each entry of the CAM consists of a 32-bit 
address tag and a 4-bit result. A cam_lookup with an address key 
will return the matching tag’s entry number and the 4-bit result on a 
hit, or the LRU entry number on a miss. An implementation of a 
software-controlled cache using the CAM will be described in 
Section 5.2. 

The IXP network processor includes many other application-
specific features [16] that are beyond the scope of this paper. 

4. Shangri-la 
Shangri-La is a research project exploring new technologies 

for improving network processor performance, programmability 
and usability. Shangri-La consists of the Baker programming 
language, a compiler, a runtime system and support libraries. 
Compiler development has focused on innovating and identifying 
effective optimization techniques, while runtime efforts have 
explored adaptation techniques to improve performance or reduce 
power consumption. 

4.1 Compiler 
The Shangri-La compiler leverages the large code base of the 

ORC [19][1] project. Extensive changes to the base compiler were 
made to support the complexities of compiling to the Intel IXP. An 
overview of the compiler flow is shown in Figure 5. 

Right after the source program is converted into nodes of the 
WHIRL intermediate representation (IR), the Function Profiler, 
which takes a user-supplied packet trace, simulates the network 
application by interpreting the IR nodes. During simulation, the 
Functional profiler collects global data structure access frequencies, 
CC utilizations and relative PPF execution times. 

The Functional profiler is immediately followed by Inter-
procedural analysis (IPA) and global optimizer. IPA is primarily 
responsible for forming aggregates, collections of PPFs that are 
mapped to one processing element. The partitioning strategy tries to 
maximize packet forwarding rates, using Functional profiler 
statistics to identify hot CCs to eliminate and frequently executed 
PPFs to duplicate. The aggregation methodology will be described 
further in Section 5.1. The formed aggregates are then dumped into 
separate WHIRL IR files with each file representing one aggregate.  

The combined IPA and global optimizer is also responsible for 
managing global memory. While most global application data 
structures are mapped to SRAM, some data can be placed in Scratch 
Memory, though, which has about half the latency of SRAM, but is 
significantly smaller. Possible data structures to be placed in Scratch 
Memory can be identified with Functional profiler access frequency 
statistics.  

Aggregate WHIRL
Aggregate WHIRL

ME code
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Figure 5 – Overview of Shangri-La compilation stages. 
Two different paths in the Code Generator target the different 

IXP cores. Infrequently executed control, management and 
initialization code is mapped to the XScale core. To generate code 
for the XScale, the WHIRL nodes are transformed back to C and 
then compiled by gcc. We will not discuss this path further since it 
is not critical to performance. 

Code mapped to the MEs is extensively optimized. First, the 
compiler applies SSA-based optimizations like dead code 
elimination, copy propagation and redundancy elimination [7]. 
Afterwards, the WHIRL nodes are lowered into a code generation 
intermediate representation (CGIR) adapted for the ME instruction 
set in which low-level optimizations like global register allocation 
and instruction scheduling are performed.  

Significant effort was spent dealing with tricky aspects of the 
ME instruction set. For example, the 32 general-purpose registers 
available to each ME thread are divided into two banks so that 
instructions with two source operands must have each operand 
originate from a different register bank. This additional constraint 
must be considered during global register allocation. Special 
handling was also required to support wide memory accesses. As 
mentioned earlier, wide Scratch Memory, SRAM and DRAM reads 
and writes access a sequence of adjacent 32-bit registers. To 
properly handle the register dependencies for these memory 
instructions that read or write multiple registers, the CGIR 
implements aggregate pseudo-registers which can associate 
dependencies to individual registers or to the entire set of registers. 

4.2 Runtime system 
Code generated by the Shangri-La compiler is run on the Intel 

IXP atop a thin, custom runtime system (RTS). The RTS includes 
libraries that abstract commonly found network processor hardware 
resources to facilitate runtime reconfiguration of the system. For 
example, the RTS can dynamically decide how to map CCs to one 
of many possible hardware-specific implementations (e.g. the IXP 
has ME next-neighbor registers or Scratch Memory rings for this 
purpose). The most promising uses of runtime reconfiguration being 
explored include dynamically turning ME cores off to reduce power 
consumption when network traffic is low and dynamic code 
reconfiguration to adapt to changes in processed packet 
characteristics [36]. This part of Shangri-La is under development 
and not the focus of this paper. 
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5. Key Optimizations 
At high line rates, network processors have extremely tight 

instruction and memory access budgets. For OC-48 (2.5Gbps) with 
minimum size 64B packets, less than 700 instructions can be 
dedicated to processing a given packet on the IXP2400 (which is 
designed for the OC-48 configuration) with six MEs (two of the 
eight MEs are dedicated to Rx and Tx, respectively). 

Available memory bandwidth also is a precious resource on 
IXPs. We performed a simple memory access experiment on our 
IXP setup to characterize the estimated maximum possible 
forwarding rates for different numbers of memory accesses per 
packet, as shown in Figure 6. In this experiment, all six 
programmable MEs are executing a simple tight loop issuing only 
memory accesses. The numbers of memory accesses in the tight 
loop are plotted on the x axis and the achieved forwarding rates are 
plotted on the y axis. This figure suggests that to achieve 2.5Gbps 
for minimum sized packets (64B), there can be no more than two 
DRAM accesses, eight SRAM accesses or 64 Scratch memory 
accesses for each packet. Also evident in the figure are the 
fractionally lower forwarding rates that result from issuing wider 
accesses to a given memory level. 
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Figure 6 – Illustrates the effects of memory accesses per packet 
(1-128), memory level (DRAM, SRAM or Scratch) and memory 

access width (8B-64B) on the forwarding rate of a simple 
application running on the IXP2400. 

While the application of traditional scalar inter-procedural and 
intra-procedural optimizations are critical to meeting the tight 
instruction and memory budgets, the optimizations highlighted in 
this section describe special techniques we applied to meet our 
performance goals. 

5.1 Aggregation 
Aggregation attempts to map the application onto available 

processor resources in order to maximize packet forwarding rates. 
Aggregation makes use of a throughput model, statistics from the 
Functional profiler and an algorithm for creating aggregates from 
multiple PPFs. 

  k
p
nt ×∝    Equation 1 

The throughput relationship shown in Equation 1 describes 
packet throughput (t) in terms of the number of MEs (n), the 
pipeline stage with the lowest throughput (k) and total number of 
pipeline stages (p). For a given IXP processor, n is fixed, leaving p 
and k for optimization. k is derived primarily from estimated PPF 
execution times and CC overhead statistics collected by the 

Functional profiler. The goal of aggregate formation is to 
maximize packet forwarding rates.  

Compared to traditional multi-processor optimization where 
the goal is to minimize total execution time, this relationship: better 
reflects how packet pipelines behave; describes the optimization 
goal according to how performance is evaluated for packet 
processing; and eliminates system latency from the optimization 
criteria. The last two points differentiate network applications from 
normal program optimization in that latency of a packet through the 
system can be tolerated in many cases, but minimum forwarding 
rates must be guaranteed.  

The throughput-driven cost model can result in significantly 
different code from traditional program parallelization that focuses 
on latency reduction. When parallelizing a fixed workload, all the 
system resources are consumed toward a single goal to minimize 
total execution time. In throughput-oriented systems, the available 
resources are used to maximize the number of inputs that can be 
simultaneously processed. Unlike workload optimization, long 
latency communication and memory accesses are tolerable as long 
as they can be hidden with work from processing other inputs and 
memory bandwidth is not saturated. 

This cost model is used to drive aggregate formation, as 
shown in Figure 7. To maximize throughput, our compiler can 
choose to pipeline or duplicate code across multiple processing 
elements. In pipelining, a packet processing task is divided into 
aggregate pipe stages (each representing one stage in the pipeline) 
that are mapped to different processing elements connected via 
CCs. During execution, packets are passed between the aggregate 
pipe stages in an assembly-line fashion. Our model correctly 
indicates that with n fixed, adding pipe stages (increasing p) 
requires a proportional decrease in k to maintain the same 
throughput. 

done ← false
while ! done do

done ← true
{dom, next_dom} ← FIND_DOMINATING( aggregates )
if EXEC_TIME( dom )  >> EXEC_TIME( next_dom )  then

if DUPLICATE_IMPROVES_THROUGHPUT( dom, target_throughput )
DUPLICATE( dom )
done ← false
continue

aggregate_pairs ← FORM_PAIRS( aggregates )
SORT_BY_HIGHEST_CHANNEL_COST( aggregate_pairs )
foreach pair in aggregate_pairs do

if MERGE_IMPROVES_THROUGHPUT( pair, target_throughput )
&& MERGE_SATISFIES_CODESIZE_LIMIT( pair ) then

MERGE( pair )
done ← false
break

if done && NUM( aggregates ) > num_processors then
RELAX_CONSTRAINT( target_throughput )
done ← false

foreach aggr in aggregates do
if( ! SATISFIES_CODESIZE_LIMIT( aggr )

| | INFREQUENTLY_EXECUTED( aggr ){
MAP_TO_XSCALE( aggr )
remove aggr from aggregates

}
duplication_factor ← num_MEs / NUM( aggregates )
MAP_TO_MES( aggregates,  duplication_factor )   

Figure 7 – Pseudo-code for forming aggregates. 
An individual aggregate pipe stages or the entire pipeline can 

also be duplicated to run on multiple processors. Duplicating an 
aggregate pipe stage effectively doubles its throughput. The 
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duplicated pipe stage can now handle twice as many packets in 
steady-state flow, even though the latency through it remains 
unchanged. If the entire packet pipeline is duplicated instead, 
floor(n / p) is the pipeline replication factor. 

On real network programs and IXP hardware, the throughput 
model biases against pipelining and favors duplication for two 
reasons. Firstly, to maximize throughput of the slowest pipe 
aggregate, work must be evenly partitioned across all pipeline 
aggregates, a challenging task in practice. Secondly, pipelining 
naturally adds overhead for communicating data over CCs between 
each pipe aggregate compared to an equivalent aggregation without 
pipelining. 

Supporting pipelining, though, is necessary for several reasons. 
MEs have very limited code store. If a network application’s critical 
path cannot fit into the code store of a single ME, there is no choice 
but to utilize pipeline stages. Pipelining may also have beneficial 
secondary efforts. Pipelining access to multiple locks might result in 
less contention than duplicating one aggregate with multiple locks. 
It might also reduce capacity misses for software-controlled caching 
(Section 5.2). 

Aggregates are formed heuristically by merging or duplicating 
PPFs to maximize system throughput. When merging, the goal is to 
improve throughput by reducing communication costs. Here, pairs 
of PPFs with the highest communication costs are placed on the 
same aggregate. Pipeline aggregate duplication is used to improve 
the throughput of the slowest pipe aggregate if its throughput is 
much less than the other pipeline aggregates. After the aggregates 
have been formed, frequently executed aggregates representing the 
core packet processing functions are mapped to the MEs while 
infrequently executed aggregates representing support, control and 
initialization functions are mapped to the XScale processor. 

An important consideration in real-time applications like 
packet processing is worst case execution time (WCET) analysis. 
Computing bounds on task execution in the system ensures that the 
network processor can maintain a minimum line rate. This analysis 
can be incorporated into our current compilation framework through 
an iterative compilation design. Results of WCET analysis on code 
produced by the Code generator can be fed back into the IPA and 
global optimizer to modify compilation decisions or to notify the 
programmer that the current program will be unable to achieve the 
user-specified minimum performance targets. 

5.2 Delayed-update software-controlled caching 
Packet processing cores in the Intel IXP do not have hardware 

caches. The common belief is that packet applications lack enough 
interesting locality to dedicate die-area for caches. For example, 
little locality exists in packets stored in DRAM since packets are 
usually processed by one thread and then leave the system 
completely. Recent studies, though, have shown packet programs 
have locality in the application data structures. For example, Baer et 
al [3] as well as Chiueh and Pradhan [6] demonstrated architectures 
where caching can improve the forwarding rate of packet route 
lookups. 

The Shangri-La compiler utilizes existing IXP hardware to 
implement a software-controlled cache that tries to exploit available 
application caching opportunities without hardware caches. On the 
IXP, the CAM (Section 3.3) can be used to do fast lookups for 
available cache entries and cache lines can be stored in an ME’s 
Local Memory which is available to all its threads. To identify good 
caching candidates, expected hit rates and access frequencies for 
global data access statistics from the Functional profiler are used. 

To correctly maintain strict cache coherency, access to 

software-controlled cache entries would have to be protected by 
critical sections or the home location would have to be checked on 
every access, both of which would be expensive and eliminate any 
caching benefits.  

Shangri-La generates a novel “delayed-update” software cache 
that can be used in error-tolerant applications like packet 
processing. Suitable caching candidates are frequently read data 
structures that have high hit rates, but are infrequently written. A 
frequently found pattern are structures that are frequently read by 
the packet processing cores, but infrequently written by 
maintenance, control or initialization code. Updates to these 
structures are not protected by critical sections in the original code, 
but rely on the coherency of a single atomic write to guarantee 
correctness of an update. 

A delayed-update cache only checks on every ith packet for 
updates at a cache line’s home location, as shown in Figure 8. This 
significantly reduces the frequency and cost of coherency checks, 
but causes updates to cached entries to be delayed relative to 
changes in the home location (e.g. in SRAM).  

While incoherency is undesirable in normal applications, 
delayed updates in network programs only causes packet delivery 
errors. Fortunately, network protocols are tolerant of packet delivery 
errors. For example, TCP, used for most connection-oriented 
internet messages, can request retransmission of lost frames in a 
stream [34]. Quality of service (QoS) routers explicitly drop frames 
on selected packet streams to throttle bandwidths, and firewalls drop 
selected packets to secure internal networks from the internet. 
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dataglobal← val tmp ← dataglobal
... tmp ... 

dataglobal← val
updateddata ← true

if count > check_limit then
count ← 0
if updateddata then

CLEAR_CACHE()
updateddata ← false

count++
if CACHE_HIT( data ) then

tmp ← datacached
else

tmp ← dataglobal
... tmp ...  

Figure 8 – Code for store and load paths for delayed-update 
cache to dataglobal. Updates to the shared global are detected by 

changes in the compiler-generated updateddata. 
For a given application, a minimum per-packet load update 

check rate (rload_check) can be calculated from a user-specified per-
packet maximum tolerable packet delivery error rate (rerror), the per-
packet rate of expected stores to the variable (rstore), and the per-
packet rate of expected loads to the variable (rload), as shown in 
Equation 2. As expected, this equation suggests reductions in 
expected stores or loads can reduce the minimum update check rate. 

 
error

loadstore
checkload r

rrr ×≥_
   Equation 2  

5.3 Optimized packet handling 
Packet encapsulation (packet_encap(), packet_decap(), 

packet_extend, packet_shorten), packet data access 
(data_read, data_write) and metadata access (meta_read, 
meta_write) primitives all significantly impact instruction and 
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memory counts. For example, each packet read and write requires 
up to {38 + 5 * access_size_in_words} instructions and involves at 
least one SRAM and one DRAM access. Given the frequency of 
packet reads and writes in packet processing code, this overhead can 
be significant relative to the 700 instructions / packet budget for 
achieving 2.5Gbps on the Intel IXP2400. Given the frequency 
packet handling operations occur in real application code and the 
limited per-packet instruction and memory access budget available, 
optimizing them can result in significant performance 
improvements.  

5.3.1 Packet access combining (PAC) 
Network applications are naturally expected to access fields of 

a packet during processing. Packet data are always stored in DRAM 
memory on the IXP because packets can be extremely large and in 
most cases, only the header of the packet is accessed by a network 
application. According to Figure 6, though, if we simply map every 
packet access to a DRAM access, packet forwarding rates would be 
quickly limited by DRAM bandwidth.  

To prevent this, an analysis incorporated in the IPA and  global 
optimizer and the Code Generation stages of the Shangri-La 
compiler aggressively combines multiple protocol field accesses 
into a single, wide DRAM access. For example, in Figure 2, the 
packet fields dst and type can be accessed together using only one 
DRAM access. This optimization can also be applied to combine 
packet SRAM metadata accesses. 

Packet accesses to be combined must satisfy three criteria: 
� packet_handles must be equal. 
� The address ranges of the packet data accesses must be 

adjacent or within a specified bounded range. For the IXP, 
which is optimized for wide memory accesses, even accesses 
separated by 32- or 64-bits can benefit from combining. 

� The combined data width can not exceed the width that can be 
accessed by one memory instruction. 
Packet access combining is performed in four major steps: 

1. Use the criteria above to find the candidates among all packet 
accesses in an aggregate.  

2. Compute dominator and post-dominator graph. Packet 
accesses to be combined must satisfy the dominance 
relationship (e.g. only dominated reads may be combined). 

3. Combined packet accesses must not violate any data 
dependencies. A data-flow analysis identifies any 
dependencies between protocol field accesses. In this analysis, 
a read access is considered a use, and a write access is 
considered a definition. Two read accesses can be combined if 
there is no intervening definition to the first field before the 
second read access. Two write accesses can be combined if 
there is no intervening use of the first field before the second 
write access. 

4. Combine the packet accesses and eliminate the redundant ones. 
The remaining packet reads and writes are updated with new 
memory access offsets and sizes. The removed packet access 
locations now read temporaries containing the pre-loaded 
packet data or write temporaries that buffer data to be written 
out the packet. 

5.3.2 Static offset and alignment resolution (SOAR) 
Statically determining packet access offsets is almost as 

important to performance as packet access combining. In network 
applications, the location and alignment of a given protocol’s field 

is application-context specific. Consider the MPLS over Ethernet 
packet [28] shown in Figure 9. These packets can have an arbitrary 
number of MPLS headers attached to the payload (e.g. IPv4 header 
and data). Consequentially, in applications that process MPLS 
packets, the locations of the MPLS and IPv4 protocol fields relative 
to the start of the packet cannot be determined statically. When 
offsets of protocol fields are not static, the alignment of fields may 
also be application dependent. Many processor architectures, 
including IXP, can only perform word-aligned memory accesses.  
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Figure 9 – Illustrates when the offset and alignment of packet 
fields can (normal IPv4) and cannot (MPLS) be resolved 

statically. 
Handling both unknown field offsets and alignments 

dynamically at runtime adds significant overheads to packet access 
primitives. While static alignment resolution can remove only a few 
instructions, more than half of the 40+ instructions in a packet data 
access can be removed with static offset resolution. Fortunately, 
static offsets and alignments can be determined in many instances, 
but they can only be determined by analyzing the entire packet 
processing application. 

┬offset

0 1 2 n…3
…

┴offset

 
Figure 10 – Lattice for static offset determination (SOD). 
We developed a full-program analysis to determine, when 

possible, static protocol field offsets and alignments for packet 
accesses in a given packet application. Static offset and alignment 
resolution (SOAR) is performed in eight major steps. The purpose 
of the analysis is to statically determine the value of the head_ptr 
(see Figure 3) at all packet access locations: 
1. Identify all packet encapsulation (e.g. packet_encap() and 

packet_decap()), packet data accesses (e.g. ph-

>protocol_field) and packet_handle assignments in the 
application. 

2. Initialize lattice values for static offset determination (SOD). 
SOD lattice values, shown in Figure 10, correspond to current 
protocol offset (c_offset) of a live packet_handle relative 
to the initial head_ptr: 

 At packet_handles entering the receive module (Rx), 

  c_offset  ← 0 
 At all other program locations,    

  c_offset  ← ┬offset 
3. Perform global (inter-procedural and intra-procedural) forward 

flow analysis of lattice values for SOD. Computed values for 
c_offset should be recorded at all packet access program 
points. The monotonic flow function is described below: 
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 At packet_encap(),  
  c_offsetout ← c_offsetin  
  – BIT_OFFSET( packet_encap() )  
 
 At packet_decap(),  
  c_offsetout ← c_offsetin  
  + BIT_OFFSET( packet_decap() )  
 
 At control flow joins, 
  c_offsetout ← n  if all c_offsetin(i)  

  = n | ┬offset 
     ← ┴offset  otherwise  
 
4. Perform global backward flow analysis of lattice values using 

the previous flow function, but only apply analysis at program 
points where c_offset = ┬

offset. Updated values for 
c_offset should be recorded at all packet access program 
points. This backward path is used to propagate static offsets to 
packets not entering via Rx (e.g. at packet_create() or 
packet_copy()). 

 

quadword

doubleword

┬alignment

┴alignment

word

short

byte

 
Figure 11 – Lattice for static alignment determination (SAD). 

5. Initialize lattice values for static alignment determination 
(SAD). Lattice values correspond to current protocol 
alignment (c_alignment) of a live packet_handle relative 
to the head_ptr: 

 
 At packet_handles entering the receive module (Rx),  
  c_alignment  ← quadword 
 
 At all other program locations, 

  c_alignment  ← ┬alignment 
 
6. Perform global forward flow analysis of lattice values for 

SAD. Computed values for c_alignment should be recorded 
at all packet access program points. The monotonic flow 
function is described below: 

 
 At a packet_encap(),   
  c_alignmentout ← ALIGNMENT( c_alignmentin  
  - BIT_OFFSET( packet_encap() )  ) 
 
 At a packet_decap(),   
  c_alignmentout ← ALIGNMENT( c_alignmentin  
  + BIT_OFFSET( packet_decap() )  ) 
 
 At control flow joins, 
  c_alignmentout  
  ← a   if all c_alignmentin(i)  

  = a | ┬alignment 
  ← MIN_ALIGNMENT( all c_alignmentin(i) ) 

   otherwise  
 

7. Perform global backward flow analysis of lattice values using 
the previous flow function, but only apply analysis where 
c_alignment = ┬alignment. Updated values for c_alignment 
should be recorded at all packet access program points. This 
backward path is used to propagate static offsets to packets not 
entering via Rx (e.g. at packet_create() or 
packet_copy()). 

8. The results of these two dataflow analyses can be used to 
optimize packet accesses and packet encapsulation in the 
generated code: 

 
 For all packet field accesses with a statically resolved constant offset 

(c_offset != ┴offset), an optimized packet access sequence for a fixed 
offset can be used in place of a one that must handle unknown offsets: 

  OFFSET( field ) 
  ← c_offset + OFFSET_IN_PROTOCOL( field )  
 
 For all packet field accesses with a statically resolved constant alignment 

(c_alignment != ┴alignment) and an unknown offset (c_offset = 
┴offset), an optimized packet access sequence for a fixed alignment can be used 
in place of one that must handle unknown offsets and alignments: 

  ALIGNMENT( field )  
  ← ALIGNMENT( c_alignment  
   + PROTOCOL _ALIGNMENT ( field )  ) 
 
 For all packet encapsulations (packet_encap() and packet_decap()) 

with a statically resolved constant offset, code does not need to be generated to 
update the head_ptr relative to the size of the current encapsulation. Prior to 
join points where a static offset cannot be resolved (c_offset = ┴offset), 
code must be inserted that updates the value of head_ptr to reflect its current 
offset. Applying this transformation eliminates instructions and memory accesses 
resulting from unnecessary updates of head_ptr. 

5.3.3 Eliminating packet access primitives 
In this section, we describe situations where program analysis 

can be used to identify packet access primitives from a compiled 
source application that can be completely eliminated in the 
generated code. 

The metadata construct is useful for packet processing 
because it allows state to be attached to a packet as it flows through 
different PPFs and modules. For example, in Figure 1, the l3_fwdr 
module can attach a next hop ID to a packet, which the eth_encap 
module uses to find the correct Ethernet header information to 
encapsulate the packet with. Performance may suffer, though, if 
metadata accesses are always converted into actual reads and writes 
of metadata stored into SRAM (see Figure 3). Writes to SRAM are 
only necessary if the metadata field might be accessed by another 
ME. In many cases, after aggregation and extensive inlining, a 
given metadata field may only be live within one PPF or aggregate. 
In this case, the metadata access can be simply treated as a local 
variable. 

packet_encap() and packet_decap() allow arbitrary 
layering of packet protocols and allow modular packet applications 
to be written independent of how it may be encapsulated within 
another application. For example, IPv4 applications can be written 
to run on Ethernet or to run on any other physical layer protocol. 
The encapsulation functions update the current head_ptr (stored in 
the packet SRAM metadata) to reflect data prepended to a packet. 
These encapsulation primitives add memory and instruction 
overheads. Full support of these primitives is required to enable 
handling and layering of arbitrary protocols (like the MPLS 
application where an arbitrary number of MPLS packet headers can 
be prepended), but compiler analysis can identify instances when 
code generated for the primitive can be completely omitted: 
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� packet_encap() and packet_decap() can be eliminated in 
conjunction with results of the SOAR analysis. If a value of 
head_ptr has been statically determined at a 
packet_encap() and packet_decap() location, the 
head_ptr to the current protocol does not need to be 
maintained and these primitives do not need to be represented 
at all in the code. 

� Paired encapsulation calls (packet_encap() → 
packet_decap() or packet_decap() → 
packet_encap()) between two protocols can be eliminated 
if they are paired for every path between them and are called 
within the same aggregate. In this case, the net result relative 
to other aggregates is that the head_ptr remains unchanged. 

5.4 Stack layout optimization 
Implementing a normal program stack is not straightforward 

due to the Intel IXP’s partitioned memory hierarchy and explicit 
memory instructions for accessing each memory level. Local 
program variables and spilled register temporaries are traditionally 
stored in a frame of the program stack. Since Baker does not 
support recursion and a static call graph can be constructed at 
compile time, program stack locations could easily be assigned 
statically to different memory locations.  

In Shangri-La, though, the primary goal of stack layout 
optimization is to allocate as many stack frames as possible to the 
limited amount of fast memory. Only 48 words of Local Memory 
are available to each of the eight threads for stack memory (the 
remaining memory is reserved for other uses like software-
controlled caching). To accommodate programs with larger stacks, 
the stack can grow into SRAM, but its high latency and the 
consumed bus bandwidth would significantly impact performance if 
used extensively for the program stack.  

Since explicit instructions access each level of memory, the 
compiler can, for every stack access, either generate instructions 
and associated control to store in both types of memory, or statically 
assign it to only one memory level. Since any control overhead 
would add a significant number of dynamic instructions for every 
stack access, we opted for the later solution. 

In Shangri-La, an aggregate’s dispatch loop calls PPFs 
(procedures in this discussion) that have packets arriving on its 
input CCs (the procedure’s inputs), resulting in a very flat call 
graph. Given this runtime model, we expect top level procedures in 
the call graph to be executed most frequently. Hence, the basic stack 
allocation strategy is to assign Local Memory to procedures higher 
in the program call graph and assign SRAM memory when Local 
Memory has been completely exhausted. If a procedure is called 
from more than one place, its call stack is assigned to the minimum 
stack location (in Local Memory or SRAM) that will never collide 
with possibly live stack entries, depending on where it is called 
from. 

Our experiments so far suggest stack locations in SRAM can 
significantly degrade performance. In initial implementations, the 
L3-Switch application included over 100 dynamic SRAM accesses 
per packet that came from the stack. Although stack space in Local 
Memory is small, the call stack in this application also did not 
exceed 5 frames. It was soon discovered that stack accesses were 
being mapped to SRAM because the Local Memory stack locations 
were poorly utilized.  

One problem was that initially, to easily accommodate the 
IXP’s offset addressing mode, the stack has a minimum 64B (16 
words) frame size. On the IXP, stack entries can be accessed in the 
same cycle only by using offset-based addressing. In offset-based 

addressing, the address pointer used to access Local Memory must 
to be aligned so that the offset can simply be OR’ed to the address 
pointer (e.g. $SP[3] is equivalent to *($SP | (3 << 2)). An 
improved stack layout was implemented that eliminated this 
minimum stack frame size. Here, the compiler maintains two stack 
pointers, the physical ($pSP) and virtual ($vSP) stack pointers, as 
shown in Figure 12. The physical stack pointer is always properly 
aligned and the virtual one is sized to the procedure’s required 
minimum. In the final code, only the physical stack pointer is 
generated, but the virtual stack pointer is used to calculate the 
correct offset for a stack access relative to the physical stack pointer. 

We also confirmed that aggressive inlining improved 
utilization of the stack. Merging stack frames together eliminates 
frame boundaries and stack slots reserved for call actual parameters. 
It also increases global optimization opportunities, which decreases 
the number of stack slots reserved for temporaries. Both frame size 
optimizations and aggressive inlining are essential for keeping the 
runtime stack completely in Local Memory and for achieving good 
performance on larger network applications. 
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Figure 12 – Illustrates our technique for minimizing call stack 

frame sizes. 

6. Experimental Results 
To evaluate code generated from the Shangri-La compiler, we 

performed experiments on an Intel IXP2400 evaluation board with 
8MB SRAM, 64MB DRAM and three 1Gbps optical ports. An 
IXIA packet generator with three 1Gbps optical ports (to support a 
maximum of 3Gbps throughput) was used to transmit packets and 
collect statistics. 

6.1 Benchmark applications 
Three network applications written in Baker were evaluated, 

L3-Switch (3126 lines), Firewall (2784 lines) and MPLS (4331 
lines).  

L3-Switch [27] bridges and routes IP packets. The critical path 
for L3-Switch is the route lookup for the next hop router ID. Next 
hop IDs are found by traversing a tree data structure (often called a 
trie) to match the longest matching string of bits from the most 
significant bits of the destination IP address and retrieving the next 
hop ID associated with that match. 

Firewall sits between an internal network and an external 
network and prevents selected packets from passing. A classifier 
attaches flow IDs to packets by matching several packet fields (e.g. 

232



 

source and destination IPs, source and destination ports, protocol 
and type of service (TOS)) to an ordered list of user-defined 
patterns. Selected flow IDs are then dropped by the Firewall. 

Multiprotocol Label Switching (MPLS) [28] routes according 
to labels, instead of destination IPs, attached to packets entering the 
domain. Routing with labels reduces hardware requirements for 
routing and facilitates high-level traffic control that cannot be 
achieved by per-hop IP routing. 

L3-Switch and MPLS were evaluated using NPF packet traces 
[27][28]. We developed our own packet traces for evaluating 
Firewall. 

6.2 Performance Evaluation 
Packet forwarding rates and dynamic memory accesses for 

each application were collected as optimizations were successively 
enabled. Optimization ordering was done in a way to highlight each 
optimization, since the benefits of some of the optimizations depend 
on each other. All optimizations are disabled in the BASE 
configuration, -O1 adds typical scalar optimizations, -O2 inlines 
base packet handling routines, PAC enables packet access 
combining, SOAR enables static offset and alignment resolution, PHR 
removes unnecessary packet handling support code and SWC enables 
software-controlled caching. 

 
Table 1 – Dynamic memory accesses per packet. 

P acket A pplicat io nScratch
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Total

L3 -Switch
 + SW C 2.0 3.0 2.0 0.0 8.0 15.0
 + PH R 2.0 3.0 2.0 1.0 11.0 19.0
 + PA C 2.0 9.0 3.0 1.0 11.0 26.0
 + -O 1 2.0 35.0 29.0 1.0 12.0 79.0
BA SE 2.0 35.0 29.0 1.0 22.0 89.0

F irewall
 + SW C 2.0 1.0 1.0 0.3 14.0 18.3
 + PH R 2.0 1.0 1.0 0.3 14.0 18.3
 + PA C 2.0 5.0 1.0 0.3 14.0 22.3
 + -O 1 2.0 40.6 25.6 0.3 30.8 99.3
BA SE 2.0 40.6 25.6 0.6 32.5 101.3

M P LS
 + SW C 2.0 7.0 2.0 0.0 5.0 16.0
 + PH R 2.0 7.0 2.0 2.0 9.0 22.0
 + PA C 2.0 14.0 3.0 2.0 8.0 29.0
 + -O 1 2.0 23.0 16.0 2.0 9.0 52.0
BA SE 2.0 23.0 16.0 2.0 14.0 57.0  

 
For all configurations except three, the program’s entire critical 

packet pipeline was mapped to one ME and then replicated up to 
five times on the other MEs. The MPLS O1 pipeline and the L3-
Switch and MPLS BASE pipelines had to be mapped to two MEs due 
to ME code size constraints. This pipeline was then replicated two 
more times on the remaining four MEs. In the most optimized case, 
we have been unable so far to map the critical path of the 
benchmark applications to more than one ME. This is due in part to 
the fact that today, network forwarding applications are still 
designed to be simple and have short critical paths so that they can 
handle high packets rates. 
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Figure 13 – Packet forwarding rates for L3-Switch. 
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Figure 14 – Packet forwarding rates for Firewall. 
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Figure 15 – Packet forwarding rates for MPLS. 
Table 1 shows the average per-packet dynamic memory 

accesses for each application as relevant optimizations are enabled 
(-O2 and SOAR only affect dynamic instruction counts and have no 
effect on memory access counts). The effects of stack layout 
optimization described in Section 5.4 are already included in these 
reported numbers. Without stack layout optimization, even simple 
programs would generate too many SRAM accesses to achieve 
respectable packet forwarding rates. The significant impact of PAC 
is evident in this table from the large reduction in packet handling 
SRAM and DRAM accesses. In the case of Firewall, PAC even aids 
the scalar optimizer by exposing additional opportunities to 
eliminate application SRAM accesses. 

Figures 13-15 display packet forwarding rates on minimum 
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sized 64B packets. Each curve represents the effect of successive 
optimizations for one to six MEs enabled. Code generated by 
Shangri-La for all three applications have successfully achieved 
100% forwarding rates at 2.5Gbps, which is what the IXP2400 
designed for and is the same throughput target achieved by hand-
coded assembly versions of the applications written specifically for 
the processors. 

The figures further show that PAC improved packet forwarding 
the most. While PAC eliminates instructions, its largest effect is on 
reducing DRAM and SRAM accesses. As Figure 6 suggested 
earlier, having more than just a few DRAM accesses limits the 
theoretical forwarding rate of the system by saturating the memory 
bandwidth. This saturation is evidenced by the non-linear increase 
and flattening in forwarding rates with increasing numbers of MEs 
enabled for each of the optimization curves. Without memory 
bandwidth effects, forwarding rates should always increase linearly 
with more MEs enabled and eliminated instructions should always 
improve performance with a constant proportion with more MEs 
enabled.  

In the BASE, -O1 and –O2 configurations, forwarding rate 
flattening occurs with fewer MEs because there are more memory 
accesses per packet. The PAC, SOAR, PHR and SWC configurations 
generate fewer memory accesses per packet and only saturate 
memory bandwidth with at least four MEs enabled. 

-O1 and SOAR are important to reducing per-packet instruction 
counts. Reduced instruction count is important because its effect is 
multiplied as more MEs are enabled. –O1 optimizations enable 
MPLS’s and L3-Switch’s critical path to fit on one ME instead of 
two. SOAR significantly improves forwarding rates on L3-Switch 
and MPLS. Instruction count reductions can be best seen with only 
one or two MEs enabled on the L3-Switch and MPLS applications. 
At these points, memory bandwidth limits are not being hit and 
improvements in forwarding rates are purely due to instruction 
count reductions. 

The effects of –O2, PHR and SWC appear to have limited effects 
on application forwarding rates, but PHR’s and SWC’s ability to 
reduce dynamic SRAM and Scratch Memory accesses are clearly 
evident in Table 1. SWC successfully caches two small frequently-
accessed data structures in L3-Switch and MPLS. 

Our experiments suggest only a rough relationship between the 
number of memory accesses and the IXP2400’s maximum 
achievable packet forwarding rates. For example, Figure 6 showed 
that the hardware could achieve 2.5Gbps only if there was 1 DRAM 
access. Both L3-Switch and Firewall achieve approximately 
2.7Gbps, and MPLS achieves 3Gbps, even though all these 
applications have approximately the same number of DRAM and 
SRAM accesses in the most optimized configuration.  

These inconsistencies suggest that although there is a clear 
trend between memory accesses and achievable packet forwarding 
rates, there are also important secondary factors. One secondary 
factor is the impact of the memory access width on packet 
forwarding rates, shown earlier in Figure 6. MPLS probably 
achieves higher packet forwarding rates because it issues narrower 
memory accesses to DRAM than the other two applications (24B 
vs. 40B). Another possible factor for the discrepancy is the balance 
between computation and memory accesses. For example, the 
experiment in Figure 6 had almost no computation, but achieved 
lower packet forwarding rates than real applications. In this case, 
the amount of computation and memory access overlap between 
threads on the same ME may be reduced because all the threads are 
waiting on memory.  

7. Related Work 
Click [20] is the most relevant and established academic C++ 

programming model and environment for building packet 
processing applications on a single, general-purpose, processor. 
Baker bears many similarities to Click, especially in regards to its 
modeling of communication channels (CCs). The original Click 
project focused more on the language design than performance: they 
used a standard C++ compiler and were targeting a general-purpose 
uniprocessor. Due to architectural and technology differences, it is 
difficult to make any performance comparison between our system 
and theirs. Kohler, Morris and Chen [21] later described a source-
to-source tool for optimizing Click module configurations. Most of 
the optimizations they implemented to eliminate modular 
inefficiencies in a L3-Switch resembled traditional scalar compiler 
optimizations. The click-align optimizer addressed similar packet 
data alignment issues faced by our system. 

Additional work has also been done by other researchers to 
extend the performance of Click. NP-Click [31] was a project to 
implement Click on the Intel IXP by replacing code in Click 
modules with ME instructions. This modularization resulted in a 
35% reduction of the packet forwarding rate on minimum sized 64B 
packets compared to a hand-coded implementation. SMP Click 
extended the Click runtime system to run an unmodified Click 
configuration on a SMP [5].  

There has been a lot of research recently specifically on 
programming the IXP, although it has mostly focused on low-level 
compilation issues. George and Blume [12] developed a network 
programming framework and a network application language, 
Nova, but their language is less ambitious and the compiler has 
mostly focused on scalar optimizations for the IXP. Li and Gupta 
[24] developed an algorithm that lays out local variables based on 
access patterns to take better advantage of 
autoincrement/autoincrement addressing modes available on the 
IXP. Zhuang and Pande [38] described three different approaches 
for resolving ME register bank conflicts during register allocation. 
In a later paper [37], they described how to share registers across 
threads in a ME to make better use of available architectural 
registers. Kim et al. [22] described a retargetable compiler 
infrastructure for network processors, but their target processor was 
the Paion PPII. Much like our work, they concluded that aggressive 
reduction of memory accesses is critical in packet processors that do 
not have caches. 

In addition to assemblers, Intel currently has a product toolkit 
for developing network applications in a C-like language [18]. A 
newer version of the toolkit is also being developed that supports an 
auto-partitioning mode that can automatically construct pipeline 
stages from a program [10]. This compiler achieves similar 
optimization goals, but assumes a different starting point for the 
programmer. While the Shangri-La compiler encourages 
programmers to write small PPFs, which are merged or duplicated 
by the compiler, they assume programmers write large procedures 
that are partitioned into stages by the compiler. 

Both of these commercial compilers [10][18] remove 
scheduling and register allocation challenges of programming in 
assembly, but mapping data to memory levels, managing threads 
and accessing specialized hardware (e.g. hardware queues and 
CAM) are still the programmer’s responsibility. Non-inlined 
function calls are converted into branches and then registers are 
globally allocated. Automatic spilling of live registers is supported, 
but only to one level of memory specified by the programmer [17]. 

There are a few publications worth mentioning describing 
work relating to the optimizations highlighted in this paper. 
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Udayakumaran and Barua [35] also proposed a form of software-
controlled caching. In their scheme, the software-controlled cache is 
used to store register spills to the program stack and prevent it from 
polluting the hardware data cache. Because our scheme selectively 
caches global data, it requires a more complex scheme to identify 
good caching candidates and selectively generate caching code. 
Additionally, our software-controlled cache also implements a 
delayed-update coherence mechanism. In comparison, they can 
completely ignore coherency because they only cache a thread’s 
private stack. 

Davidson and Jinturkar [9] described a memory coalescing 
algorithm for general purpose processors similar to our packet 
access combining (PAC). This algorithm replaced narrow array 
access with doubleword accesses in unrolled loops. Memory 
coalescing implemented extensive profitability checks to factor the 
realignment costs and limited packing width. Packet access 
combining is almost always profitable given the high cost of 
DRAM access on the IXP. Both algorithms perform similar scalar 
safety checks, but memory coalescing must also handle potential 
array aliasing. Gupta, Mehofer and Zhang [14], and Stephenson, 
Babb and Amarasinghe [33] described frameworks for bit-level 
analysis and optimization that may be useful for analyzing network 
packet accesses, but neither of these works describe any ideas that 
bear any resemblance to our optimizations of packet access 
primitives. 

Finally, Avissar, Barua and Stewart [2] discussed techniques 
for mapping a program stack to heterogeneous memories. Our work 
is similar to their work in that both have static, not dynamic, 
mappings to memory levels. In their approach, both global and 
stack memories are allocated by solving a large linear programming 
system that incorporates profiling. We also use profiling data for 
mapping global data structures, but we allocate stack memory and 
global data separately, and our stack allocation strategy primarily 
relies on the static program call graph. Avissar, Barua and Stewart’s 
work also does not need to deal with the complexities of stack 
frame alignment. 

8. Conclusions 
This paper addresses the challenges of achieving hand-tuned 

performance on highly resource-constrained network processors on 
code compiled from high-level languages. We presented a complete 
framework for aggressively compiling network programs using both 
traditional and specialized optimizations techniques to aggressively 
reduce both instruction and memory access counts. Detailed 
performance evaluations of compiler generated code of three 
popular network applications on real hardware show the importance 
of these optimization techniques in achieving 100% packet 
forwarding rates at 2.5Gbps. 

For future work, we will continue with efforts to improve 
compiled program performance and to try more network 
applications on our system. We are also considering if some of the 
highlighted optimizations can be applied to deal with the difficulties 
of compiling for future general-purpose chip multiprocessors with 
heterogeneous cores and memories. 
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