
178 | Mobile OS Architecture Trends

Contributors

Intel® Technology Journal | Volume 16, Issue 4, 2012

The world is flat, because it becomes increasingly mobile, fast, connected, and
secure. People expect to move around easily with their mobile devices, keeping
close communications with their partners and family, enjoying the versatile
usage models and infinite contents, and without worrying about the device
and data management. These all put requirements on the mobile devices, of
which the mobile OS is the soul. Based on our years of experience in mobile
OS design and an extensive survey of current industry situation, we believe
there are several commonalities in future mobile OS architecture, such as user
experience, power management, security design, cloud support, and openness
design. We develop an analysis model to guide our investigation. In this article,
we describe our investigations in the trends of mobile OS architecture over the
next decade by focusing on the major commonalities. Based on the findings,
we also review the characteristics of today’s mobile operating systems from the
perspective of architecture trends.

Introduction
Mobile OS design has experienced a three-phase evolution: from the PC-
based OS to an embedded OS to the current smartphone-oriented OS in
the past decade. Throughout the process, mobile OS architecture has gone
from complex to simple to something in-between. The evolution process is
naturally driven by the technology advancements in hardware, software, and
the Internet:

 • Hardware. The industry has been reducing the factor size of
microprocessors and peripherals to design actual mobile devices. Before the
form factor size was reduced enough, the mobile device could not achieve
both small size and processing capability at the same time. We had either a
PC-sized laptop computer or a much weaker personal data assistant (PDA)
in phone size. Mobile operating systems for PDAs usually did not have
full multitasking or 3D graphics support. Features like sensors, such as
accelerometers, and capacitor-based touchscreens were not available in the
past mobile operating systems.

 • Software. With a laptop computer, the software is mainly focused on
the user’s productivity, where support for keyboard and mouse that have
precise inputs are essential. The software for a personal data assistant, as
its name implies, helps the user to manage personal data such as contacts
information, e-mail, and so on. The mobile operating systems were not
designed for good responsiveness or smoothness with a rich user interface
(UI) including both touchscreen and other sensors.

Xiao-Feng Li
Software and Services Group,
Intel Corporation

Yong Wang
Software and Services Group,
Intel Corporation

Jackie Wu
Software and Services Group,
Intel Corporation

Kerry Jiang
Software and Services Group,
Intel Corporation

Bing Wei Liu
Software and Services Group,
Intel Corporation

MObIle OS ArChITeCTure TrendS

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 179

 • Internet. Along with Internet development, especially after Web 2.0,
there is abundant information in the network waiting to be searched,
organized, mined, and brought to users. People are increasingly
living with the Internet instead of just browsing the Web. More and
more people are involved in the development, including information
contribution, application development, and social interactions. The
mobile operating systems cannot be self-contained, but have to be open
systems.

The usage model of past mobile devices is limited. A user mostly runs the
device applications for data management and local gaming, only occasionally
browses Internet static Web pages or accesses specific services like e-mail.
In other words, the possible usages of the device are predefined with the
preinstalled applications when the user purchases it. This is largely changed
in new mobile devices, where the device is virtually a portal to various
usage models. All the involved parties such as service providers, application
developers, and other device users continuously contribute and interact
through the device with its owner. Figure 1 shows the high-level usage model
difference between the past and new mobile devices.

The usage model of past mobile devices

is limited.

Service
providers

Application
developers

Other
users

Mobile device
applications

Mobile device
applications

End user End user

Internet/Services

Internet cloud

(A) The past usage model (B) New usage model

Figure 1: high-level usage models of mobile devices
(Source: Intel Corporation, 2012)

The representatives of current mobile operating systems include Apple’s
iOS* 5.0, Google Android* 4.0, Microsoft Windows* Phone 7.0, and a few
others. In terms of their usage models, they share more similarities than
differences:

 • All of them have a documented software development kit (SDK) with well-
defined APIs that enable the common developers to develop applications
for these systems.

Intel® Technology Journal | Volume 16, Issue 4, 2012

180 | Mobile OS Architecture Trends

 • All of them have online application stores for the developers to publish and
for the users to download applications, such as Apple App Store, Google
Play, and Windows Phone Marketplace.

 • All of them have a certain level of multitasking and 3D graphics support.
Touchscreens and sensors are just no-brainers. Much effort have been spent
to make the user interactions smooth and responsive.

 • Browsing experience is far beyond static Web pages. HTML5 is becoming
the default so as to run Web-based applications.

 • All of the operating systems support device-based payment. Together with
enterprise applications and private information, system security is always a
key concern to the device users.

 • As mobile operating systems, one of key design differences from non-
mobile operating systems is the focus on battery life. The systems try best
to reduce the active power consumption of the device components and put
them into idle whenever possible.

The similarities of the current mobile operating systems reflect the
advancement trend in hardware, software, and the Internet. Anticipating the
trend of mobile operating systems, we believe those areas are the major focuses
of the next generation of mobile OS design, including user experience, battery
life, cloud readiness, security, and openness. They are actually conflicting
targets to a large extent:

 • User experience and battery life. To achieve best responsiveness and
smoothness, the system expects all the hardware resource available to exploit
their best capacity. At the same time, to sustain the battery life as a mobile
device, the hardware components should be idle whenever possible.

 • Security and openness. One does not want to expose all of one’s system
functionalities to external entities, because that puts the system under
security threat. On the other hand, without exposing enough system APIs,
it is impossible for the developers to create innovative usages.

 • Cloud readiness. As more and more services and applications are offered from
the cloud, it is natural to consider a thin client device model that trusts the
cloud and that offloads computations to the cloud. But as of today, the thin
client model still has technical challenges in user experience and security.

In this article, we try to investigate the various aspects of mobile OS design and
present our opinions about the future of mobile OS architecture.

The article is arranged as follows. Based on the framework laid out in this
section, we use separate sections to discuss the respective topics in text below.
They are arranged in user experience, power management, security, openness,
and cloud readiness. Finally we have discussions and a summary.

User Experience (UX)
Traditional performance is inadequate to characterize modern client devices.
Performance is more about the steady execution state of the software stack and

“System security is always a key concern

to the device users.”

“As of today, the thin client model

still has technical challenges in user

experience and security.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 181

is usually reported with a final score of the total throughput in the processor or
other subsystems. User experience is more about the dynamic state transitions
of the system triggered by user inputs. The quality of the user experience is
determined by such things as the user perceivable responsiveness, smoothness,
coherence, and accuracy. Traditional performance could measure every link of
the chain of the user interaction, while it does not evaluate the full chain of
the user interaction as a whole. Thus the traditional performance optimization
methodology cannot simply apply to the user experience optimization. It is
time to invest in device user interaction optimizations so as to bring the end
user a pleasant experience.

User Interactions with Mobile Devices
In a recent performance measurement with a few market Android devices, we
found there was a device X behaving uniformly worse than another device Y
with common benchmarks in graphics, media, and browsing. But the user
perceivable experience with the device X was better than device Y. The root
reason we identified was that traditional benchmarks or benchmarks designed
in traditional ways did not really characterize user interactions, but measured
the computing capability (such as executed instructions) or the throughput
(such as processed disk reads) of the system and the subsystems.

Take video evaluation as an example. Traditional benchmarks only measure
video playback performance with some metrics like FPS (frames-per-second),
or frame drop rate. This methodology has at least two problems in evaluating
user experience. The first problem is that video playback is only part of the
user interactions in playing video. A typical life cycle of user interaction usually
includes at least the following links: “launch player” “start playing”
“seek progress” “video playback” “back to home screen.” Yet good
performance in video playback cannot characterize the real user experience
in playing video. User interaction evaluation is a superset of traditional
performance evaluation.

The other problem is, using FPS as the key metric to evaluate the smoothness
of the user interactions cannot always reflect good user experience. For
example, when we flung a picture in the Gallery3D application, the device
Y had obvious stuttering during the picture scrolling, but the FPS value of
device Y was higher than that of device X. In order to quantify the difference
of the two devices, we collected the data of every frame during a picture
fling operation in the Gallery3D application on both device X and device
Y, as shown in Figure 2 and Figure 3 respectively. Every frame’s data is given
in a vertical bar, where the x-axis is the time when the frame is drawn, and
the height of the bar is the time it takes the system to draw the frame. From
the figures, we can see that device X obviously has a lower FPS value than
device Y, but with smaller maximal frame time, less frames longer than 30
ms, and smaller frame time variance. This means that, to characterize the user
experience of the picture fling operation, those metrics like maximal frame
time and frame time variance should also be considered.

“The traditional performance

optimization methodology cannot

simply apply to the user experience

optimization.”

“Good performance in video playback

cannot characterize the real user

experience.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

182 | Mobile OS Architecture Trends

Figure 2: Frame times of a fling operation in Gallery3D application on device X
(Source: Intel Corporation, 2011)

0

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

78
1

80
1

82
1

84
1

86
1

88
1

90
1

92
1

10

20

30

40

50

60

70

80

90

100
Frame Times of Touch Fling

Time (ms)

Notice the followings:
• Max frame time
• #frames > 30ms
• Frame time variance
• FPS

F
ra

m
e

Ti
m

e
(m

s)

Figure 3: Frame times of a fling operation in Gallery3D application on device Y
(Source: Intel Corporation, 2011)

0

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

78
1

80
1

82
1

84
1

86
1

88
1

90
1

92
1

10

20

30

40

50

60

70

80

90

100
Frame Times of Touch Fling

Time (ms)

Notice the followings:
• Max frame time
• #frames > 30ms
• Frame time variance
• FPS

F
ra

m
e

Ti
m

e
(m

s)

As a comparison, Figure 4 shows the frame data of a fling operation after we
optimized the device Y. Apparently all the metrics have been improved and the
frame time distribution became much more uniform.

User experience is more about dynamic state transitions of the system triggered
by user inputs. A good user experience is achieved with things such as user
perceivable responsiveness, smoothness, coherence, and accuracy. Traditional
performance could measure every link of the chain of the user interaction
without evaluating the full chain of the user interaction as a whole.

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 183

Another important note is that user experience is a subjective process; just
consider the experience when watching a movie or appreciating music.
Current academic research uses various methodologies such as eyeball tracking,
heartbeat monitoring, or just polling to understand user experience. For
our software engineering purpose, in order to analyze and optimize the user
interactions systematically, we categorize the interaction scenarios into four
kinds:

 • Inputs to the device from the user, sensor, network, and so on. This category
evaluates if the inputs can trigger the device to action accurately or fuzzily
as expected. For touchscreen inputs, it measures the touch speed, pressure,
range, and so forth.

 • Device response to the inputs. This category evaluates how responsive the
device is to the inputs.

 • System state transition. This category especially evaluates how smooth
graphics transition on the screen. It can be a follow-up of the device
response to some input.

 • Continuous control of the device. People operating the device not only give a
single input, but sometimes also control the graphic objects in the screen,
such as to control a game jet-plane, or to drag an application icon. The
category is to evaluate the controllability of the device.

Among them, “inputs to the device” and “control of the device” are related to
the user experience aspect of how a user controls a device. “Device response to
the inputs” and “system state transition” are related to the aspect of how the
device reacts to the user. We can map a user interaction life cycle into scenarios
that fall into the categories above; then for each scenario, we can identify the
key metrics in the software stack to measure and optimize.

Figure 4: Frame times of a fling operation in Gallery3D application on device Y after optimization
(Source: Intel Corporation, 2011)

0

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

78
1

80
1

82
1

84
1

86
1

88
1

90
1

92
1

10

20

30

40

50

60

70

80

90

100
Frame Times of Touch Fling

Time (ms)

Notice the followings:
• Max frame time
• #frames > 30ms
• Frame time variance
• FPS

F
ra

m
e

Ti
m

e
(m

s)

Intel® Technology Journal | Volume 16, Issue 4, 2012

184 | Mobile OS Architecture Trends

User Interaction Optimizations
As we have described in last subsection, there is no clear-cut and objective
way to measure the user experience. We set up following criteria in our
measurement of the user interactions:

 • Perceivable. The metric has to be perceivable by a human being. Otherwise,
it is irrelevant to the user experience.

 • Measureable. The metric should be measurable by different teams. It should
not depend on certain special infrastructure that can only be measured by
certain teams.

 • Repeatable. The measured result should be repeatable in different
measurements. Large deviations in the measurement mean that it is a bad
metric.

 • Comparable. The measured data should be comparable across different
systems. Software engineers can use the metric to compare the different
systems.

 • Reasonable. The metric should help reason the causality of software stack
behavior. In other words, the metric should be mapped to the software behavior
and it should be possible to be computed based on software stack execution.

 • Verifiable. The metric can be used to verify an optimization. The measured
result before and after the optimization should reflect the change of the user
experience.

 • Automatable. For software engineering purposes, we expect the metric can
be measured largely unattended. This is especially useful in regression tests
or pre-commit tests. This criterion is not strictly required though, because it
is not directly related to user experience analysis and optimization.

Guided by the measurement criteria, we focus on the following complementary
aspects of the user experience, how a user controls a device and how a device
reacts to a user. How a user controls a device has mainly two measurement areas:

 • Accuracy/fuzziness. It evaluates what accuracy, fuzziness, resolution, and
range are supported by the system for inputs from the touch screen, sensors,
and other sources. For example, how many pressure levels are supported
by the system, how the sampled touch events’ coordinates are close to the
fingertip move track on the screen, how many fingers can be sampled at the
same time, and so on.

 • Coherence. It evaluates the drag lag distance between the fingertip and
the dragged graphic object in the screen. It also evaluates the coherence
between the user operations and the sensor-controlled objects, such as the
angle degree difference between the tilting controlled water flow and the
device oblique angle.

How a device reacts to a user also has two measurement areas:

 • Responsiveness. It evaluates the time between an input being delivered to the
device and device showing visible response. It also includes the time spent
to finish an action.

“How a user controls a device has

mainly two measurement areas.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 185

 • Smoothness. This area evaluates graphic transition smoothness with the
maximal frame time, frame time variance, FPS, frame drop rate, and so
forth. As we have discussed, FPS alone cannot accurately reflect the user
experience regarding smoothness.

For these four measurement areas, once we identify a concrete metric to use,
we need to understand how this metric is related to a “good” user experience.
Since user experience is a subjective topic that highly depends on human
being’s physiological status and personal taste, there is not always scientific
conclusion about what value of a metric constitutes a “good” user experience.
For those cases, we just adopt the industry experience values. The Table 1 gives
some examples of the industry experience values.

Best Good Acceptable

Response delay 100 ms 200 ms 500 ms
Graphics animation $120 fps $60 fps $30 fps
Video playback $60 fps $30 fps $20 fps

Table 1: example Industry experience Values for user experience
(Source: Intel Corporation, 2011)

Due to human nature, there are two notes for software engineers to pay
attention to the user experience optimizations.

The value of a metric usually has a range for “good” user experience. A “better”
value than the range does not necessarily bring “better” user experience.
Anything beyond the range limit could be invisible to the user.

The values here are only rough guidelines for common cases with typical
people. For example, a seasoned game player may not be satisfied with the
120 fps animation. On the other hand, a well-designed cartoon may bring
perfect smoothness with 20 fps animation.

Now we can set up our methodology for user experience optimization. It can
be summarized into following steps.

Step 1: Receive the user experience sightings from the users or identify the
interaction issues with manual operations. This can be assisted by high-speed
camera or other available techniques.

Step 2: Define the software stack scenarios and metrics that transform a user
experience issue into a software symptom.

Step 3: Develop a software workload to reproduce the issue in a measureable
and repeatable way. The workload reports the metric values that reflect the user
experience issue.

Step 4: Use the workload and related tools to analyze and optimize the software
stack. The workload also verifies the optimization.

Step 5: Get feedback from the users and try more applications with the
optimization to confirm the user experience improvement.

“A seasoned game player may not be

satisfied with the 120 fps animation.

A well-designed cartoon may bring

perfect smoothness with 20 fps

animation.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

186 | Mobile OS Architecture Trends

Based on this methodology, we have developed an Android Workload Suite
(AWS)[33] that includes almost all the typical use cases of an Android device.
We have also developed a toolkit called UXtune[34] that assists user interaction
analysis in the software stack. Different from the traditional performance
tuning tools, UXtune correlates the user-visible events and the system low-
level events. As the next step, we are porting the work from Android to other
systems.

Mobile OS Design for User Experience
Based on our experience with Android, we found the UX optimization
is somehow similar to parallel application optimization, only with more
complexities, for the following four reasons:

 • UX involves multiple hardware components, and multiple software
processes, and their interactions;

 • UX on a client device has to consider the power consumption, because UX
also includes the battery life and device temperature.

 • UX has precise timing requirements, such as smoothness where the user
expects no frame time variance. Neither faster nor slower is acceptable;
hitting the exact time point is required. This point is more like a real-time
requirement.

 • UX has some subjective factors one has to consider in mobile OS design,
such as whether some animation is just a hint or essential to UX, and
whether the system can drop some frames to get better response.

One critical lesson learned from our experience is to understand the critical
path of certain operations. Different from parallel application tuning, mobile
OS design does not always have strict explicit synchronization between the
involved hardware components and software threads. For example:

 • Every application uses an event loop to handle requests. When a thread A
has a request to another thread B, it may not directly invoke the function,
but instead posts a message to thread B. The message is then queued in the
event loop of thread B waiting for handling. It is then out of the caller’s
control how fast the event could be handled if there are multiple events in
the queue.

 • Another example is when a thread A executes a sequence of operations and
then posts a message to another thread B for follow-up actions and response
to the user. Not all the sequence of the operations by thread A must be
done in order. For example, it could post the message to thread B as early as
possible so that thread B can respond to the user earlier.

The major point regarding power is that, with user experience, faster is not
necessarily better—contrary to traditional performance optimizations. When
the system already reaches the user-perceivable best responsiveness, next step
optimization is the slower the better within the best perceivable range. For
example, if a game has 60 fps without problem, then the mobile OS should
try to get both the CPU utilization and CPU frequency as low as possible. We

“The UX optimization is somehow

similar to parallel application

optimization.”

“Every application uses an event loop

to handle requests.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 187

have to always distinguish the two cases (faster-better and slower-better) clearly.
The optimization techniques for the two cases can be quite different.

When multiple cores and GPUs are introduced, the two cases above become
more obvious. More cores help “faster-better” scenarios usually, but hurt
battery life for “slower-better” scenarios. A mobile OS has to turn on and off
the cores with a smart policy, because the on/off latency could be longer than a
touch operation (usually in a range of 100 ms to 500 ms).

For parallel application performance tuning, people found “execution replay”
useful in debugging. It is usually one multithreaded application reply, that is,
within one process. For UX, the interactions cross processes through IPC, and
between CPU, GPU, and display controller (DC), are a whole-system-wide
collaboration. The traditional replay technique cannot help.

Power Management (PM)
Power management has always been a key challenge to mobile OS designers
and will be even more so moving forward. Power demands are increasing
rapidly on mobile devices as more and more power hungry applications are
developed for mobile platforms. However, battery capacity growth could
never keep up in the meantime due to both the slow development in battery
technologies and the fact that people want more sleek and compact form
factors that could fit into a pocket. Power management is becoming an
increasingly complex problem on mobile devices and a holistic approach needs
to be employed to address it.

Processor Power Management
Mobile operating systems have been making steady progress in the power
management area in the last decade. Initially the focus of mobile OS power
management work had been on processor power management since the
processor had long been the most significant consumer of total platform
power. Modern processors support dynamic frequency and voltage scaling
such as Enhanced Intel SpeedStep® Technology. Such processor capabilities
enabled mobile operating systems to adjust processor frequency and/or
voltage dynamically at runtime based on the demand of computing power
required by the workload that is currently running on the processor. This saves
a significant amount of processor power while it is active since consumed
power is proportional to the square of core voltage and frequency. The cpufreq
subsystem in the Linux kernel is an example of managing processor power
while it is active. In addition to dynamic frequency and voltage scaling,
modern processors typically support multiple processor idle states with varying
amounts of power consumed in those idle states. The deeper the idle state,
the more power could be saved although at the expense of longer entry and
exit latency. A mobile OS could direct the processor to enter an appropriate
idle state based on predicted idleness and QoS constraints posed by other
subsystems and user space. Linux’s cpuidle subsystem is an example of power
managing a processor while it is idle.

“A mobile OS has to turn on and off

the cores with a smart policy.”

“Power management is becoming

an increasingly complex problem on

mobile devices.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

188 | Mobile OS Architecture Trends

Device Power Management
The focus of mobile OS power management work has shifted to device power
management. In particular, a mechanism has been introduced to manage
the power of I/O devices at runtime. Runtime power management for I/O
devices could automatically put I/O devices into whatever appropriate low
power states they support when the corresponding devices are detected as idle
at runtime. In addition to managing the power of I/O devices while they are
idle, there are some technology innovations to save I/O device power while
they are active. For example, modern GPUs are starting to support dynamic
voltage and frequency scaling similar to that found on CPUs. GPU dynamic
voltage and frequency scaling could reduce power consumption by as much
as 50 percent for mobile 3D graphics in some cases. In addition, I/O devices
are becoming smarter in the sense that they can work on their own without
CPU intervention. For example, technologies like panel self-refresh could save
a significant amount of power while the image is static in the cases like when
a user is reading a book on a mobile device. The display panel could keep
rendering from its local memory in this case and many hardware components
that traditionally must be working while rendering display could be shut down,
including CPU, memory, display engine and display port.

Mobile OS Power Management Cases
Android gained momentum and became popular before the infrastructure
of device runtime power management was introduced into the Linux kernel
and it came up with another approach called opportunistic suspend in order to
achieve the goal of extending battery life on Android devices. Without device
runtime power management capabilities, Android tries to suspend the system
aggressively whenever there is no interesting work going on. This is indicated
by no one holding a wakelock.

Windows 8 introduced a new system power state called connected standby.
Unlike traditional S3 standby, which halts all system activities, the system is
still running though in an extremely low power state and this enables users to
stay up to date with the latest information such as their e-mails. Windows 8
connected standby is based on processor idle power management and device
runtime power management technologies.

Software hygiene is the most challenging problem for both suspend- and idle-
based power management approaches, and the battery life depends very much
on application behaviors on such systems. A recent study says that free Android
applications waste 75 percent of power on ads by holding a wakelock in the
background, thus block system suspend. This is also true for Windows 8, where
one power-unfriendly application staying busy for no good reason will prevent
the entire system from entering connected standby power state. Some people
expect the system power management to be more robust even in the face of
such power-unfriendly applications by introducing more capable mechanisms,
while others think that putting such a mechanism in place will only lead to the
proliferation of more ill-behaved applications.

“Modern GPUs are starting to support

dynamic voltage and frequency scaling

similar to that found on CPUs.”

“Software hygiene is the most

challenging problem for both suspend-

and idle-based power management

approaches.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 189

Openness
Another major trend of mobile operating systems is the openness. In this
context, the openness of mobile operating systems means the level of
opportunity and freedom that people have to use, contribute to, customize,
and innovate for the mobile OS for their purposes. There is already work[6]
that has studied the openness from the developers’ perspective. The work has
identified the facets that decide the developers’ perception of the platform
openness. Here we study the trend of openness from the ecosystem perspective,
As we believe the openness matters to enable and foster the mobile ecosystem.

Openness to Players of the Mobile Ecosystem
The players of the mobile ecosystem include manufacturers (OEMs) who make
and sell mobile devices, the service providers (operators) who provide network
connection and other value-added services, consumers (end users), the ISVs
who develop commercial applications, and developers from communities who
develop applications and even contribute on mobile OS development and
evolution if the mobile OS is open-sourced.

The openness of mobile operating systems implies different things to different
players in the mobile ecosystem. For operators, the openness of the mobile
OS determines how easy their services can be ported, migrated, deployed,
and run smoothly across the devices. For mobile device manufacturers, the
openness determines how much they can customize the mobile OS itself to
run across platforms and differentiate their devices from others, and even more
importantly, the openness determines how easily they can build devices with a
consistent user experience. For ISVs and community developers, the openness
determines how easily they can develop new applications with their creative
ideas and how their investment on application development can be maximized
through programming once running across devices. For the end users or
consumers of mobile devices, the openness means how easily they can get more
applications, like the rich applications downloaded from the stores, without
worrying too much about inconsistency of user experience and incompatibility
of applications across devices. The openness may also give people the chance
to participate in the development and evolution of the mobile OS itself during
the life cycle of the mobile OS.

Evolution of Mobile OS Openness
A couple of years ago, most mobile devices were feature phones, and
people mostly used the phones for voice calls, as a phonebook, and for text
messages. For consumers, the applications they could play were limited to
the applications built in devices when the devices were shipped out from the
factory. For application developers or third-party ISVs, they didn’t have access
to any level of source code without a contract with the OS owner. Such a
mobile OS was a purely closed system and was typically owned by a mobile
device maker. For operators, they had to work closely with OS developers to
enable their services, because only the people who developed the mobile OS
knew how to develop applications.

“Another major trend of mobile

operating systems is the openness.”

“The openness determines how

easily they can build devices with a

consistent user experience.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

190 | Mobile OS Architecture Trends

Later, as the mobile phone started to transition from feature phone to smart
phone, people expected the smart phone to be able to do more, like browsing
the Web and playing music/video, rather than just making calls, storing
contact information, and sending text messages. To encourage more developers
to develop more applications to meet people’s needs, the creators of mobile
operating systems simply provided sets of APIs and related tools like SDKs, so
that people could develop all kinds of applications for mobile devices. With such
openness, application developers gained the freedom to develop applications
for mobile operating systems, so it became possible for consumers to buy and
install more applications rather than being limited to the pre-built applications.
Because application developers and consumers benefitted from such openness,
it became almost a “must-have” for most mobile operating systems to provide
a set of APIs and an SDK. The iOS from Apple is one of the great examples
of a mobile OS providing such a level of openness. In recent years more and
more mobile operating systems have made all source code public, in addition
to providing APIs and SDKs. Anyone could have the chance to view all source
code, contribute to the code, evolve, and customize the mobile OS itself.
Compared with the level of openness of just providing APIs and SDK, the
open-source mobile OS can provide some additional freedom. For mobile device
makers, they may have the freedom to build their own mobile OS based on the
open source OS to run on their platforms across devices. For operators, they can
easily build and deploy their services across devices running the open source OS
and its variants. For developers, the open source mobile OS provides everything
they need to easily build their applications. Eventually the end users of mobile
devices can benefit from this level of openness, as they have more choices of
applications and more devices to choose to run the applications. Lastly, everyone
has the freedom to participate in evolving and shaping the open source mobile
OS, which is very attractive to the talents from communities around the world.
Android OS is another great example of an open source mobile OS. Its great
success and segment share growth in the smart phone market during the past few
years have indicating to the industry just how successful it has been and how fast
it has been growing as an open source mobile OS.

As a summary, the openness of future mobile operating systems is one of
the key factors to make mobile platforms friendly to the mobile ecosystem,
especially to be attractive to application developers and consumers. Mobile
OS openness is a requirement of computing continuum, which expects most
software to be built once and running everywhere with a consistent user
experience to end users.

Cloud Readiness
The cloud has been widely used by mobile users and most of the cloud services
are presented as Web sites and accessed by the browser running on the mobile
browsers. More and more cloud services have been provided through web
applications, which are installed from an application store and run like native
applications on the mobile client. Either with a browser or standalone web
application, the following areas should be considered in mobile OS design.

“Anyone could have the chance to view

all source code, contribute to the code,

evolve, and customize the mobile OS

itself.”

“Mobile OS openness is a requirement

of computing continuum.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 191

HTML5 Capability
HTML5 capability is essential for web applications to integrate cloud services
well and to provide a good user experience.

Web engines being used: we listed the web layout engines and JavaScript
engines being used on the mainstream mobile browsers. Chrome* has the
potential to be the default browser of Android and bring its success from
desktop to mobile. The Webkit is used in iOS and Android.

The HTML5 test web site[9] scores HTML5 support of browsers on various
mobile devices. We can see in Table 2 that iOS, Android, and Windows
Phone are all improving their browser’s capability to support HTML5.
Google made Chrome work on Android 4.0 and showed its ambition
to have the lead browser in mobile operating systems. Tizen, the new
participant in the mobile OS campaign even got the highest score on its
development device released in the first Tizen Developer Conference. We
can easily see the intense race of HTML5 support between mobile operating
systems.

Layout
engine

JavaScript
engine

 Score 1
 Bonus

Safari on iOS 5.1 Webkit Squirrel Fish
Extreme (SFX)

 324 1 9

Android browser on
Android 4.0

Webkit V8 273 1 3

IE on Windows Phone 8 Trident Chakra 300 1 6
Tizen 1.0 Webkit SFX 400 1 15 *
Chrome Beta on
Android 4.0

Webkit V8 364 1 10

Opera Mobile 12 Presto Carakan 369 1 11
Firefox Mobile 10 Gecko SpiderMonkey 325 1 9

Table 2: Web layout engines, JavaScript engines, and Their Score from
html5test.com
(Source: [9] accessed on May 1, 2012. * The score of Tizen 1.0 is from the
latest Tizen development device, tested by Intel Corporation.)

The third-party browsers are in difficult situation and need a strategy to
have their own host mobile OS. Opera and Firefox are in such a situation.
Due to the fact that they have less control of mobile OS development, they
won’t be able to win easily if the built-in browser is capable enough for
HTML5 support. Firefox has been looking for Boot To Gecko as its host
mobile OS. A video on YouTube[10] also shows the preview of Opera OS on
Asus EeePC .

The mobile OS vendors view HTML5 support as more and more important
and are making it a core competency. The browser vendors are also looking for
the possibility to make it default in the mobile OS.

“HTML5 capability is essential for

web applications to integrate cloud

services.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

192 | Mobile OS Architecture Trends

Web Applications
The web application defines the client side applications developed with
web technologies. It provides rich features by providing APIs for client side
development. The web application can be installed and run even offline on the
devices. The web application can access local devices and resources as a native
application and can be sold in an application store, which benefits much from
the cloud service delivery and billing.

The web application is more than a URL accessed from a browser. The related
capabilities are being defined in several working groups in W3C. The Web
Applications Working Group is the central place related to those works.[11]

To enable web applications, the mobile OS needs to provide a web application
platform, which includes web runtime, web framework, and development
tools:

 • The web runtime provides the core capability to run a web application. It is
derived from the browser but is more integrated with the OS runtime.
The web runtime provides an HTML5 engine and the APIs to access
local devices. It also provides the capabilities to integrate well with the OS
runtime, which includes the application life cycle management (install/
update/uninstall and launch), OS integration (desktop integration, security
policy, OS services access.)

 • The web framework provides rich libraries for web application development.
Examples are jQueryMobile and Sencha. Such frameworks are widely used
in iOS and Android.

 • Development tools need to be flexible. The development tools are very
diverse and can be chosen according to the web application developer’s
preferences. Development tools can be a very concentrated SDK suite
like the recently released Tizen SDK 1.0,[12] browser-based like appMobi
XDK[13], or just a set of tools like RIB and Web Simulator, released on
01.org.[14][15]

As a trend, the mobile OS has to provide a capable and high performance web
runtime, a rich web framework, and flexible development tools.

Security is always an important topic for cloud computing. For HTML5 cloud
integration in mobile operating systems, the following features must be present:

 • Sandbox support in web runtime. The web applications should run in
separate processes and be managed by the web runtime. Sandbox in
browser or web runtime has been supported on most modern mobile
operating systems.

 • JavaScript code protection. JavaScript is a scripting language, so the best way
to protect the code is still to run the code on the server side.

Cross-Platform Capability
HTML5 is well known for its cross-platform capability. But in reality,
different mobile operating systems provide different HTML5 support, and the

“The web application can be installed

and run even offline on the devices.”

“In reality, different mobile operating

systems provide different HTML5

support.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 193

standardization of HTML5 is still ongoing. PhoneGap has been developed to
address the cross-platform HTML5 support by providing its own device APIs.
Apple iOS, Android, and Windows Phone all have supported PhoneGap. It is
evolving and following W3C. Other Web API providers are also trying to make
them into the HTML5 standard in W3C.

The trend is to have a unified HTML5 standard but that is not easy. Mobile
OS vendors will implement their ideas in their own way before they go to
standard. Apple, Google, and Microsoft are all active participants in the W3C
standard definition. For other mobile OS vendors, either following W3C or
joining the definition is the trend to make their mobile operating systems
survive.

Performance
The performance is complained about most by mobile application developers
when they start to build applications with HTML5. The optimization for
mobile devices is the most important work to do for HTML5 to really succeed
in the mobile area. We consider the following to be the most important areas
to do work in optimization for mobile operating systems:

 • Hardware acceleration. The graphics and video should be accelerated by
hardware. WebGL has been enabled on more and more platforms.

 • Multithreading support. Web Worker should be supported as a key feature in
HTML5.

 • JavaScript engine optimization. JIT (Just In Time) has been enabled in both
SFX and V8.

 • Native or hybrid application support. The capability to reuse existing native
libraries will be another approach for web applications. Android NDK
provides such a capability and it is widely used in Android applications. But
on web applications, it has not been widely used. The NaCL by Chromium
is an option to support that.

Cloud Integration
Besides the powerful capabilities provided by HTML5, the seamless integration
between the cloud and client is even more important. It is not only for web
applications but also for native applications. Important reasons for integration
include:

 • Cloud storage seamless integration. The client should be using the cloud
storage just as it uses its native storage. That requires the cloud storage
client to be tightly integrated into the mobile OS. Apple has made iCloud
deeply integrated into iOS 5. The Google Drive is integrated with Google
web services.

 • Cloud APIs accessibility. On the cloud client side, the mobile operating
systems should provide capable and easy-to-use libraries for both web
and native applications to access cloud client APIs, which are normally
RESTful, SOAP, or Query APIs.

“The optimization for mobile devices

is the most important work to do for

HTML5.”

“Apple has made iCloud deeply

integrated into iOS 5.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

194 | Mobile OS Architecture Trends

 • Account management. With cloud integration, multiple clients with a single
account share the cloud and the synchronization should be managed.
Accounts should be tightly integrated in the mobile OS and account APIs
should be provided for applications to securely access the corresponding
cloud services and the local resources. The synchronization and notification
are key features in mobile operating systems to enlarge the usability of
cloud integration.

Discussion and Summary
In this section, we first discuss the major mobile operating systems in the
market today, and then summarize this article.

Apple iOS
Apple has been the leader in mobile OS design. Its iPhone* and iPad* have
prevailed across the world in only a few years. Both products feature the Apple iOS.

User experience: iOS provides good performance and is normally set as
the benchmark for other mobile operating systems. Apple is continuously
enhancing the UX performance. The iPhone 4S has much better performance
boost than its previous generations, especially the Internet and browser.[1]
With more new features added, it adds more performance requirements. An
unofficial study [1] showed the UX performance drops after the upgrade from
iOS 4.x to 5.x on iPhone 3GS.

Power management: iOS power optimization seems not able to catch up with
the increasing demands on power for new features. Arieso, a mobile network
management company, estimates that iPhone 4S users consume twice as much
data as the previous iPhone model due to increasing use of online services
like the virtual personal assistant Siri, which definitely consumes much more
power.[3]

Openness: iOS is perceived as a closed mobile OS. Research work[6] defines a
concept of perceived platform openness (PPO), where a platform’s openness
degree is decided by its developers’ perception.

Cloud readiness: iOS 5.0 with HTML5 support makes it a good cloud client
and the iCloud has been integrated by default as storage.

Google Android
Android is currently a popular operating system for mobile devices and is
developed by the Open Handset Alliance led by Google. The goal of the
Android Open Source Project is to create a successful real-world product that
improves the mobile experience for end users.[16]

User experience: The Android user experience team defined a set of design
principles[17] with three overarching goals: “Enchant me,” “Simplify my Life,”
and “Make me amazing.”[18] State-of-the-art Android and iOS devices achieved
similar results in a set of battery life benchmark tests.[19]

“The synchronization and notification

are key features in mobile operating

systems.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 195

Power management: Android aggressively suspends devices to save power
whenever nothing blocks suspend by holding a wakelock.[20] However, Android
allows third-party applications to run in the background, which might hold
such a wakelock for no good reason and thus suck power quietly.

Security: Each application runs in a sandbox environment to enforce security in
Android and this is done by assigning each application a unique user ID and
running that application as that user in a separate process.[21]

Openness: Google releases the Android code as open source under Apache
license and the Android Open Source Project is where Android development
and maintenance happen. However, Google typically partners with a selected
manufacturer to make a flagship device for each new version of Android and
only makes the new code publicly available after that device has been released.
Fragmentation has become more and more a big concern in the Android
ecosystem. Android maintains the Android compatibility program and offers
the compatibility test suites to guarantee applications developed for Android
run on every Android device.

Cloud readiness: Although Google has a huge lead in the cloud area, it has not
put together a comprehensive solution as Apple does with iCloud yet.

Microsoft Windows Phone
Microsoft has released its latest redesigned mobile OS called Windows Phone.
Based on their design change between Windows Mobile 6.5 and Windows
Phone 7, some characteristics of the newer OS are exposed.

User experience: With touchscreen-based user interaction replacing the previous
stylus input, Microsoft decided to break the application compatibility between
Windows Phone and Windows Mobile.[23] Similar to Android’s AppWidget
design, Windows Phone invents the concept of Live Tiles for the home
screen.[28]

Power management: Similar to its design security, Windows Phone’s design for
battery life can largely benefit from its Windows CE and Windows Mobile
experience. One special consideration is that Windows Phone chooses black as
the main default color theme, because black pixels do not emit any light, hence
saving power for the OLED screen.[32]

Security: Windows Phone’s design is shifted from the original Windows
Mobile’s enterprise-oriented design to an end-user–oriented one. The security
experience accumulated for the enterprise product should be still useful.[31]

Openness: Before Windows Phone was available in the market, Microsoft
released its SDK to enable the developers to program for the new OS.[24]
Windows Phone Marketplace has provided its services to 35 different
countries/regions.[25] The current programming languages are C# and Visual
Basic. These are not a surprise to any Windows developers, so the language
learning curve is expected to be flat.

“Android aggressively suspends devices

to save power.”

“Windows Phone Marketplace has

provided its services to 35 different

countries/regions.”

Intel® Technology Journal | Volume 16, Issue 4, 2012

196 | Mobile OS Architecture Trends

Cloud readiness: Windows Phone is approaching cloud readiness at a fast pace.
Windows Phone 8 integrates Internet Explorer 10 that is claimed to have
full HTML5 support and supports parallel page loading in multiple tabs. [29]
Besides that, Skype is deeply integrated into the OS.[26] One new concept in
Windows Phone are hubs, which aggregate various similar service features into
one hub. This is supposed to greatly improve the phone’s user experience with
cloud services.[27] Furthermore, the software framework design of Windows
Phone includes two parts: Screen and Cloud. The Cloud part is especially
designed for “Developer Portal Services” and “Cloud Service.”

In this article, we have investigated the major aspects of mobile OS design
based on the analysis model we have developed, including user experience,
battery life, cloud readiness, security, and openness. These should be the areas
of focus for next-generation mobile OS design.

The future mobile OS also depends on the available hardware design. We
believe a successful mobile system is a result of co-design between software and
hardware, together with the progress of the Internet.

References
(The paper references the web sites accessed on May 1, 2012.)

[1] http://www.youtube.com/watch?v=ng33wXDkyRM,
http://www.iphonedownloadbolg.com.

[2] http://www.anandtech.com/show/4951/iphone-4s-preliminary-
benchmarks-800mhz-a5-slightly-slower-gpu-than-ipad-2

[3] http://www.arieso.com/news-article.html?id=89

[4] http://www.apple.com/iphone/business/docs/iOS_Security_Mar12.pdf

[5] http://www.techrepublic.com/blog/security/comparing-android-and-ios-
security-how-they-rate/5774

[6] http://www.user.tu-berlin.de/komm/CD/paper/090322.pdf

[7] http://www.apple.com/icloud/

[8] http://www.networkworld.com/community/blog/apples-ios-5-and-cloud

[9] http://html5test.com/results/mobile.html

[10] http://www.youtube.com/watch?v=mWSPNDD0tek

[11] http://www.w3.org/2012/webapps/charter/Overview.html

[12] https://developer.tizen.org/sdk

[13] https://chrome.google.com/webstore/detail/
onmkoldigcfmebcinpmineoadckalllb

[14] https://01.org/projects/rapid-interface-builder-rib

Intel® Technology Journal | Volume 16, Issue 4, 2012

Mobile OS Architecture Trends | 197

[15] https://01.org/projects/web-simulator

[16] https://www.mylookout.com/mobile-threat-report

[17] http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2011-
mobile-threats-report.pdf

[18] http://webupon.com/security/information-systems-attacker-motivations/

[19] http://source.android.com/tech/security/index.html

[20] http://www.w3.org/2011/webappsec/

[21] http://www.trustedcomputinggroup.org

[22] http://www.globalplatform.org/specifications.asp

[23] http://channel9.msdn.com/Events/TechEd/NorthAmerica/
2010/WPH201

[24] http://www.engadget.com/2010/09/16/microsoft-demoes-twitter-and-
netflix-apps-for-windows-phone-7-r/

[25] http://windowsteamblog.com/windows_phone/b/windowsphone/
archive/2011/07/06/windows-phone-around-the-world-language-
support-in-mango.aspx

[26] http://wmpoweruser.com/microsoft-reps-claiming-windows-phone-8-
definitely-coming-to-second-gen-handsets-probably-to-first-gen/

[27] http://www.engadget.com/2010/03/18/windows-phone-7-series-the-
complete-guide/

[28] http://www.engadget.com/2010/02/15/windows-phone-7-is-official-and-
microsoft-is-playing-to/

[29] http://pocketnow.com/windows-phone/exclusive-windows-phone-7-web-
browser-comparison

[30] http://arstechnica.com/microsoft/news/2011/04/windows-phone-7-
mango-one-heck-of-an-upgrade.ars

[31] http://arstechnica.com/microsoft/news/2010/03/windows-phone-7-series-
in-the-enterprise-not-all-good-news.ars

[32] http://www.neowin.net/news/interview-windows-phone-7-battery-life-
copypaste-multitasking-and-more

[33] http://software.intel.com/en-us/articles/aws-android-workload-suite-for-
user-interaction-measurement/

[34] http://software.intel.com/en-us/articles/quantify-and-optimize-the-user-
interactions-with-android-devices/

Intel® Technology Journal | Volume 16, Issue 4, 2012

198 | Mobile OS Architecture Trends

Author Biographies
Xiao-Feng Li (xiao-feng.li@intel.com): Architect of System Software
Optimization Center, Intel Corporation. Xiao-Feng has been working with
Intel for 12 years, with extensive technical experience in parallel system,
compiler design and runtime technologies, where he has authored about 20
academic papers and 10 U.S. patents. Two years ago, Xiao-Feng initiated the
evaluation and optimization efforts for best Android user experience on Intel
platforms. Before he joined Intel, Xiao-Feng was a technical manager in Nokia
Research Center. Xiao-Feng holds a PhD degree in computer science, and is a
member of Apache Software Foundation. His personal homepage can be found
at http://people.apache.org/~xli.

Yong Wang (yong.y.wang@intel.com): Senior software engineer from Intel’s
Open Source Technology Center. He has been with Intel for 7 years working
on a variety of projects, including virtualization, manageability, OSV enabling,
etc. Most recently Yong has been working on power management for a wide
range of mobile operating systems such as Moblin, Meego, Tizen and Android.
Yong graduated from Beijing University of Aeronautics and Astronautics and
holds a master degree of computer science. He enjoys sports and reading in his
spare time.

Weihua Jackie Wu (jackie.wu@intel.com): Engineering Manager in Intel’s
Open Source Technology Center leading a team on Mobile OS and HTML5
tools development. Before that, as a research engineer, Jackie was focused on
wireless network and energy efficient communications. Prior to joining Intel
in 2004, Jackie was in Chinese Academy of Sciences developing embedded
operating system and smartphone products. Jackie received his M.S. and
B.S. in Engineering Mechanics from Beijing University of Aeronautics
and Astronautics in 2002 and 1999 respectively. He has two US patent
applications.

Kerry Jiang (kerry.jiang@intel.com): Software Manager in System
Optimization Technology Center (SOTC), Intel Corporation. Kerry has
been working with Intel for eight years, four years in open source mobile OS
software stack on IA, which includes Android optimization and MeeGo SDK.
Before joining Intel, Kerry worked in Motorola on mobile platform and 2G
wireless base-station software developments. Kerry holds a master degree in
electronics engineering.

Bingwei Liu (bing.wei.liu@intel.com): Engineering manager of Open Source
Technology Center, Intel Corporation. Bingwei has been working in Intel
for 11 years, with abundant experience in Linux OS, open source software
and system engineering. His working scope spans from enterprise to client
platforms and now is focused on Mobile OS. Bingwei holds a master degree of
computer science.

